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‘‘I have made this letter longer than usual, because I lack the time to make it short.’’
— Blaise Pascal

The C++ In-Depth Series is a collection of concise and focused books providing real-world pro-
grammers with reliable information about the C++ programming language. Selected by the
designer and original implementer of C++, Bjarne Stroustrup, and written by experts in the field,
each book in this series presents either a single topic, at a technical level appropriate to that topic,
or a fast-paced overview, for a quick understanding of broader language features. Its practical
approach, in either case, is designed to lift professionals (and aspiring professionals) to the next
level of programming skill or knowledge.

These short books are meant to be read and referenced without the distraction of unrelated
material. As C++ matures, it becomes increasingly important to be able to separate essential infor-
mation from hype and glitz, and to find the deep content and practical guidance needed for contin-
ued development. The C++ In-Depth Series provides the background, tools, concepts, techniques,
and new approaches that can enable this development, and thereby give readers a valuable, critical
edge.
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Preface

When you wish to instruct,
be brief.
– Cicero

C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and
more directly in C++11 than I could in C++98. Furthermore, the resulting programs are better
checked by the compiler and run faster.

Like other modern languages, C++ is large and there are a large number of libraries needed for
effective use. This thin book aims to give an experienced programmer an idea of what constitutes
modern C++. It covers most major language features and the major standard-library components.
This book can be read in just a few hours but, obviously, there is much more to writing good C++
than can be learned in a day. Howev er, the aim here is not mastery, but to give an overview, to giv e
key examples, and to help a programmer get started. For mastery, consider my The C++ Program-
ming Language, Fourth Edition (TC++PL4) [Stroustrup,2013]. In fact, this book is an extended
version of the material that constitutes Chapters 2-5 of TC++PL4, also entitled A Tour of C++. I
have added extensions and improvements to make this book reasonably self-contained. The struc-
ture of this tour follows that of TC++PL4, so it is easy to find supplementary material. Similarly,
the exercises for TC++PL4 that are available on my Web site (www.stroustrup.com) can be used to
support this tour.

The assumption is that you have programmed before. If not, please consider reading a text-
book, such as Programming: Principles and Practice Using C++ [Stroustrup,2009], before contin-
uing here. Even if you have programmed before, the language you used or the applications you
wrote may be very different from the style of C++ presented here.

As an analogy, think of a short sightseeing tour of a city, such as Copenhagen or New York. In
just a few hours, you are given a quick peek at the major attractions, told a few background stories,
and usually given some suggestions about what to see next. You do not know the city after such a
tour. You do not understand all you have seen and heard. You do not know how to navigate the
formal and informal rules that govern life in the city. To really know a city, you have to liv e in it,
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often for years. However, with a bit of luck, you will have gained a bit of an overview, a notion of
what is special about the city, and ideas of what might be of interest to you. After the tour, the real
exploration can begin.

This tour presents the major C++ language features as they support programming styles, such as
object-oriented and generic programming. It does not attempt to provide a detailed, reference-man-
ual, feature-by-feature view of the language. Similarly, it presents the standard libraries in terms of
examples, rather than exhaustively. It does not describe libraries beyond those defined by the ISO
standard. The reader can search out supporting material as needed. [Stroustrup,2009] and [Strous-
trup,2012] are examples of such material, but there is an enormous amount of material (of varying
quality) available on the Web. For example, when I mention a standard library function or class, its
definition can easily be looked up, and by examining the documentation of its header (also easily
accessible on the Web), many related facilities can be found.

This tour presents C++ as an integrated whole, rather than as a layer cake. Consequently, it
does not identify language features as present in C, part of C++98, or new in C++11. Such infor-
mation can be found in Chapter 14 (History and Compatibility).

Acknowledgments
Much of the material presented here is borrowed from TC++PL4 [Stroustrup,2012], so thanks to all
who helped completing that book. Also, thanks to my editor at Addison-Wesley, Peter Gordon,
who first suggested that the four Tour chapters from TC++PL4 might be expanded into a reason-
ably self-contained and consistent publication of their own.

College Station, Texas Bjarne Stroustrup
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1
The Basics

The first thing we do, let’s
kill all the language lawyers.

– Henry VI, Part II

• Introduction
• Programs
• Hello, World!
• Functions
• Types, Variables, and Arithmetic
• Scope and Lifetime
• Constants
• Pointers, Arrays, and References
• Tests
• Advice

1.1 Introduction
This chapter informally presents the notation of C++, C++’s model of memory and computation,
and the basic mechanisms for organizing code into a program. These are the language facilities
supporting the styles most often seen in C and sometimes called procedural programming.

1.2 Programs
C++ is a compiled language. For a program to run, its source text has to be processed by a com-
piler, producing object files, which are combined by a linker yielding an executable program. A
C++ program typically consists of many source code files (usually simply called source files).
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source file 1

source file 2

compile

compile

object file 1

object file 2
link executable file

An executable program is created for a specific hardware/system combination; it is not portable,
say, from a Mac to a Windows PC. When we talk about portability of C++ programs, we usually
mean portability of source code; that is, the source code can be successfully compiled and run on a
variety of systems.

The ISO C++ standard defines two kinds of entities:
• Core language features, such as built-in types (e.g., char and int) and loops (e.g., for-state-

ments and while-statements)
• Standard-library components, such as containers (e.g., vector and map) and I/O operations

(e.g., << and getline())
The standard-library components are perfectly ordinary C++ code provided by every C++ imple-
mentation. That is, the C++ standard library can be implemented in C++ itself (and is with very
minor uses of machine code for things such as thread context switching). This implies that C++ is
sufficiently expressive and efficient for the most demanding systems programming tasks.

C++ is a statically typed language. That is, the type of every entity (e.g., object, value, name,
and expression) must be known to the compiler at its point of use. The type of an object determines
the set of operations applicable to it.

1.3 Hello, World!
The minimal C++ program is

int main() { } // the minimal C++ program

This defines a function called main, which takes no arguments and does nothing.
Curly braces, { }, express grouping in C++. Here, they indicate the start and end of the function

body. The double slash, //, begins a comment that extends to the end of the line. A comment is for
the human reader; the compiler ignores comments.

Every C++ program must have exactly one global function named main(). The program starts
by executing that function. The int value returned by main(), if any, is the program’s return value to
‘‘the system.’’ If no value is returned, the system will receive a value indicating successful comple-
tion. A nonzero value from main() indicates failure. Not ev ery operating system and execution
environment make use of that return value: Linux/Unix-based environments often do, but Win-
dows-based environments rarely do.

Typically, a program produces some output. Here is a program that writes Hello, World!:

#include <iostream>

int main()
{

std::cout << "Hello, World!\n";
}
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The line #include <iostream> instructs the compiler to include the declarations of the standard
stream I/O facilities as found in iostream. Without these declarations, the expression

std::cout << "Hello, World!\n"

would make no sense. The operator << (‘‘put to’’) writes its second argument onto its first. In this
case, the string literal "Hello, World!\n" is written onto the standard output stream std::cout. A string
literal is a sequence of characters surrounded by double quotes. In a string literal, the backslash
character \ followed by another character denotes a single ‘‘special character.’’ In this case, \n is the
newline character, so that the characters written are Hello, World! followed by a newline.

The std:: specifies that the name cout is to be found in the standard-library namespace (§3.3). I
usually leave out the std:: when discussing standard features; §3.3 shows how to make names from
a namespace visible without explicit qualification.

Essentially all executable code is placed in functions and called directly or indirectly from
main(). For example:

#include <iostream> // include (‘‘impor t’’) the declarations for the I/O stream librar y

using namespace std; // make names from std visible without std:: (§3.3)

double square(double x) // square a double precision floating-point number
{

return x∗x;
}

void print_square(double x)
{

cout << "the square of " << x << " is " << square(x) << "\n";
}

int main()
{

print_square(1.234); // pr int: the square of 1.234 is 1.52276
}

A ‘‘return type’’ void indicates that a function does not return a value.

1.4 Functions
The main way of getting something done in a C++ program is to call a function to do it. Defining a
function is the way you specify how an operation is to be done. A function cannot be called unless
it has been previously declared.

A function declaration gives the name of the function, the type of the value returned (if any),
and the number and types of the arguments that must be supplied in a call. For example:

Elem∗ next_elem(); // no argument; return a pointer to Elem (an Elem*)
void exit(int); // int argument; return nothing
double sqrt(double); // double argument; return a double
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In a function declaration, the return type comes before the name of the function and the argument
types after the name enclosed in parentheses.

The semantics of argument passing are identical to the semantics of copy initialization. That is,
argument types are checked and implicit argument type conversion takes place when necessary
(§1.5). For example:

double s2 = sqrt(2); // call sqrt() with the argument double{2}
double s3 = sqrt("three"); // error : sqr t() requires an argument of type double

The value of such compile-time checking and type conversion should not be underestimated.
A function declaration may contain argument names. This can be a help to the reader of a pro-

gram, but unless the declaration is also a function definition, the compiler simply ignores such
names. For example:

double sqrt(double d); // retur n the square root of d
double square(double); // retur n the square of the argument

The type of a function consists of the return type and the argument types. For class member func-
tions (§2.3, §4.2.1), the name of the class is also part of the function type. For example:

double get(const vector<double>& vec, int index); // type: double(const vector<double>&,int)
char& String::operator[](int index); // type: char& String::(int)

We want our code to be comprehensible, because that is the first step on the way to maintainability.
The first step to comprehensibility is to break computational tasks into comprehensible chunks
(represented as functions and classes) and name those. Such functions then provide the basic
vocabulary of computation, just as the types (built-in and user-defined) provide the basic vocabu-
lary of data. The C++ standard algorithms (e.g., find, sor t, and iota) provide a good start (Chapter
10). Next, we can compose functions representing common or specialized tasks into larger compu-
tations.

The number of errors in code correlates strongly with the amount of code and the complexity of
the code. Both problems can be addressed by using more and shorter functions. Using a function
to do a specific task often saves us from writing a specific piece of code in the middle of other code;
making it a function forces us to name the activity and document its dependencies.

If two functions are defined with the same name, but with different argument types, the com-
piler will choose the most appropriate function to invoke for each call. For example:

void print(int); // takes an integer argument
void print(double); // takes a floating-point argument
void print(string); // takes a string argument

void user()
{

print(42); // calls print(int)
print(9.65); // calls print(double)
print("D is for Digital"); // calls print(str ing)

}

If two alternative functions could be called, but neither is better than the other, the call is deemed
ambiguous and the compiler gives an error. For example:
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void print(int,double);
void print(double ,int);

void user2()
{

print(0,0); // error : ambiguous
}

This is known as function overloading and is one of the essential parts of generic programming
(§5.4). When a function is overloaded, each function of the same name should implement the same
semantics. The print() functions are an example of this; each print() prints its argument.

1.5 Types, Variables, and Arithmetic
Every name and every expression has a type that determines the operations that may be performed
on it. For example, the declaration

int inch;

specifies that inch is of type int; that is, inch is an integer variable.
A declaration is a statement that introduces a name into the program. It specifies a type for the

named entity:
• A type defines a set of possible values and a set of operations (for an object).
• An object is some memory that holds a value of some type.
• A value is a set of bits interpreted according to a type.
• A variable is a named object.

C++ offers a variety of fundamental types. For example:

bool // Boolean, possible values are true and false
char // character, for example, 'a', 'z', and '9'
int // integer, for example, -273, 42, and 1066
double // double-precision floating-point number, for example, -273.15, 3.14, and 299793.0
unsigned // non-negative integer, for example, 0, 1, and 999

Each fundamental type corresponds directly to hardware facilities and has a fixed size that deter-
mines the range of values that can be stored in it:

bool:

char:

int:

double:

A char variable is of the natural size to hold a character on a given machine (typically an 8-bit
byte), and the sizes of other types are quoted in multiples of the size of a char. The size of a type is
implementation-defined (i.e., it can vary among different machines) and can be obtained by the
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siz eof operator; for example, siz eof(char) equals 1 and siz eof(int) is often 4.
The arithmetic operators can be used for appropriate combinations of these types:

x+y // plus
+x // unar y plus
x−y // minus
−x // unar y minus
x∗y // multiply
x/y // divide
x%y // remainder (modulus) for integers

So can the comparison operators:

x==y // equal
x!=y // not equal
x<y // less than
x>y // greater than
x<=y // less than or equal
x>=y // greater than or equal

Furthermore, logical operators are provided:

x&y // bitwise and
x|y // bitwise or
xˆy // bitwise exclusive or
˜x // bitwise complement
x&&y // logical and
x||y // logical or

A bitwise logical operator yield a result of their operand type for which the operation has been per-
formed on each bit. The logical operators && and || simply return true or false depending on the
values of their operands.

In assignments and in arithmetic operations, C++ performs all meaningful conversions between
the basic types so that they can be mixed freely:

void some_function() // function that doesn’t return a value
{

double d = 2.2; // initialize floating-point number
int i = 7; // initialize integer
d = d+i; // assign sum to d
i = d∗i; // assign product to i (truncating the double d*i to an int)

}

The conversions use in expressions are called the usual arithmetic conversions and aim to ensure
that expressions are computed at the highest precision of its operands. For example, an addition of
a double and an int is calculated using double-precision floating-point arithmetic.

Note that = is the assignment operator and == tests equality.
C++ offers a variety of notations for expressing initialization, such as the = used above, and a

universal form based on curly-brace-delimited initializer lists:

double d1 = 2.3; // initialize d1 to 2.3
double d2 {2.3}; // initialize d2 to 2.3
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complex<double> z = 1; // a complex number with double-precision floating-point scalars
complex<double> z2 {d1,d2};
complex<double> z3 = {1,2}; // the = is optional with { ... }

vector<int> v {1,2,3,4,5,6}; // a vector of ints

The = form is traditional and dates back to C, but if in doubt, use the general {}-list form. If nothing
else, it saves you from conversions that lose information:

int i1 = 7.2; // i1 becomes 7 (surpr ise?)
int i2 {7.2}; // error : floating-point to integer conversion
int i3 = {7.2}; // error : floating-point to integer conversion (the = is redundant)

Unfortunately, conversions that lose information, narrowing conversions, such as double to int and
int to char are allowed and implicitly applied. The problems caused by implicit narrowing conver-
sions is a price paid for C compatibility (§14.3).

A constant (§1.7) cannot be left uninitialized and a variable should only be left uninitialized in
extremely rare circumstances. Don’t introduce a name until you have a suitable value for it. User-
defined types (such as string, vector, Matrix, Motor_controller, and Orc_warrior) can be defined to be
implicitly initialized (§4.2.1).

When defining a variable, you don’t actually need to state its type explicitly when it can be
deduced from the initializer:

auto b = true; // a bool
auto ch = 'x'; // a char
auto i = 123; // an int
auto d = 1.2; // a double
auto z = sqrt(y); // z has the type of whatever sqr t(y) retur ns

With auto, we use the = because there is no potentially troublesome type conversion involved.
We use auto where we don’t hav e a specific reason to mention the type explicitly. ‘‘Specific

reasons’’ include:
• The definition is in a large scope where we want to make the type clearly visible to readers

of our code.
• We want to be explicit about a variable’s range or precision (e.g., double rather than float).

Using auto, we avoid redundancy and writing long type names. This is especially important in
generic programming where the exact type of an object can be hard for the programmer to know
and the type names can be quite long (§10.2).

In addition to the conventional arithmetic and logical operators, C++ offers more specific opera-
tions for modifying a variable:

x+=y // x = x+y
++x // increment: x = x+1
x−=y // x = x-y
−−x // decrement: x = x-1
x∗=y // scaling: x = x*y
x/=y // scaling: x = x/y
x%=y // x = x%y

These operators are concise, convenient, and very frequently used.
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1.6 Scope and Lifetime
A declaration introduces its name into a scope:

• Local scope: A name declared in a function (§1.4) or lambda (§5.5) is called a local name.
Its scope extends from its point of declaration to the end of the block in which its declara-
tion occurs. A block is delimited by a { } pair. Function argument names are considered
local names.

• Class scope: A name is called a member name (or a class member name) if it is defined in a
class (§2.2, §2.3, Chapter 4), outside any function (§1.4), lambda (§5.5), or enum class

(§2.5). Its scope extends from the opening { of its enclosing declaration to the end of that
declaration.

• Namespace scope: A name is called a namespace member name if it is defined in a name-
space (§3.3) outside any function, lambda (§5.5), class (§2.2, §2.3, Chapter 4), or enum

class (§2.5). Its scope extends from the point of declaration to the end of its namespace.
A name not declared inside any other construct is called a global name and is said to be in the
global namespace.

In addition, we can have objects without names, such as temporaries and objects created using
new (§4.2.2). For example:

vector<int> vec; // vec is global (a global vector of integers)

struct Record {
string name; // name is a member (a string member)
// ...

};

void fct(int arg) // fct is global (a global function)
// arg is local (an integer argument)

{
string motto {"Who dares win"}; // motto is local
auto p = new Record{"Hume"}; // p points to an unnamed Record (created by new)
// ...

}

An object must be constructed (initialized) before it is used and will be destroyed at the end of its
scope. For a namespace object the point of destruction is the end of the program. For a member,
the point of destruction is determined by the point of destruction of the object of which it is a mem-
ber. An object created by new ‘‘lives’’ until destroyed by delete (§4.2.2).

1.7 Constants
C++ supports two notions of immutability:

• const: meaning roughly ‘‘I promise not to change this value.’’ This is used primarily to
specify interfaces, so that data can be passed to functions without fear of it being modified.
The compiler enforces the promise made by const.
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• constexpr: meaning roughly ‘‘to be evaluated at compile time.’’ This is used primarily to
specify constants, to allow placement of data in read-only memory (where it is unlikely to
be corrupted) and for performance.

For example:

const int dmv = 17; // dmv is a named constant
int var = 17; // var is not a constant

constexpr double max1 = 1.4∗square(dmv); // OK if square(17) is a constant expression
constexpr double max2 = 1.4∗square(var); // error : var is not a constant expression
const double max3 = 1.4∗square(var); // OK, may be evaluated at run time

double sum(const vector<double>&); // sum will not modify its argument (§1.8)
vector<double> v {1.2, 3.4, 4.5}; // v is not a constant
const double s1 = sum(v); // OK: evaluated at run time
constexpr double s2 = sum(v); // error : sum(v) not constant expression

For a function to be usable in a constant expression, that is, in an expression that will be evaluated
by the compiler, it must be defined constexpr. For example:

constexpr double square(double x) { return x∗x; }

To be constexpr, a function must be rather simple: just a return-statement computing a value. A
constexpr function can be used for non-constant arguments, but when that is done the result is not a
constant expression. We allow a constexpr function to be called with non-constant-expression argu-
ments in contexts that do not require constant expressions, so that we don’t hav e to define essen-
tially the same function twice: once for constant expressions and once for variables.

In a few places, constant expressions are required by language rules (e.g., array bounds (§1.8),
case labels (§1.9), template value arguments (§5.2), and constants declared using constexpr). In
other cases, compile-time evaluation is important for performance. Independently of performance
issues, the notion of immutability (of an object with an unchangeable state) is an important design
concern.

1.8 Pointers, Arrays, and References
An array of elements of type char can be declared like this:

char v[6]; // array of 6 characters

Similarly, a pointer can be declared like this:

char∗ p; // pointer to character

In declarations, [ ] means ‘‘array of’’ and ∗ means ‘‘pointer to.’’ All arrays have 0 as their lower
bound, so v has six elements, v[0] to v[5]. The size of an array must be a constant expression (§1.7).
A pointer variable can hold the address of an object of the appropriate type:

char∗ p = &v[3]; // p points to v’s four th element
char x = ∗p; // *p is the object that p points to
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In an expression, prefix unary ∗ means ‘‘contents of’’ and prefix unary & means ‘‘address of.’’ We
can represent the result of that initialized definition graphically:

p:

v:
0: 1: 2: 3: 4: 5:

Consider copying ten elements from one array to another:

void copy_fct()
{

int v1[10] = {0,1,2,3,4,5,6,7,8,9};
int v2[10]; // to become a copy of v1

for (auto i=0; i!=10; ++i) // copy elements
v2[i]=v1[i];

// ...
}

This for-statement can be read as ‘‘set i to zero; while i is not 10, copy the ith element and increment
i.’’ When applied to an integer variable, the increment operator, ++, simply adds 1. C++ also offers
a simpler for-statement, called a range-for-statement, for loops that traverse a sequence in the sim-
plest way:

void print()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};

for (auto x : v) // for each x in v
cout << x << '\n';

for (auto x : {10,21,32,43,54,65})
cout << x << '\n';

// ...
}

The first range-for-statement can be read as ‘‘for every element of v, from the first to the last, place
a copy in x and print it.’’ Note that we don’t hav e to specify an array bound when we initialize it
with a list. The range-for-statement can be used for any sequence of elements (§10.1).

If we didn’t want to copy the values from v into the variable x, but rather just have x refer to an
element, we could write:

void increment()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};
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for (auto& x : v)
++x;

// ...
}

In a declaration, the unary suffix & means ‘‘reference to.’’ A reference is similar to a pointer,
except that you don’t need to use a prefix ∗ to access the value referred to by the reference. Also, a
reference cannot be made to refer to a different object after its initialization.

References are particularly useful for specifying function arguments. For example:

void sort(vector<double>& v); // sor t v

By using a reference, we ensure that for a call sor t(my_vec), we do not copy my_vec and that it
really is my_vec that is sorted and not a copy of it.

When we don’t want to modify an argument, but still don’t want the cost of copying, we use a
const reference. For example:

double sum(const vector<double>&)

Functions taking const references are very common.
When used in declarations, operators (such as &, ∗, and [ ]) are called declarator operators:

T a[n]; // T[n]: array of n Ts
T∗ p; // T*: pointer to T
T& r; // T&: reference to T
T f(A); // T(A): function taking an argument of type A returning a result of type T

We try to ensure that a pointer always points to an object, so that dereferencing it is valid. When
we don’t hav e an object to point to or if we need to represent the notion of ‘‘no object available’’
(e.g., for an end of a list), we give the pointer the value nullptr (‘‘the null pointer’’). There is only
one nullptr shared by all pointer types:

double∗ pd = nullptr;
Link<Record>∗ lst = nullptr; // pointer to a Link to a Record
int x = nullptr; // error : nullptr is a pointer not an integer

It is often wise to check that a pointer argument that is supposed to point to something, actually
points to something:

int count_x(char∗ p, char x)
// count the number of occurrences of x in p[]
// p is assumed to point to a zero-ter minated array of char (or to nothing)

{
if (p==nullptr) return 0;
int count = 0;
for (; p!=nullptr; ++p)

if (∗p==x)
++count;

return count;
}

Note how we can move a pointer to point to the next element of an array using ++ and that we can
leave out the initializer in a for-statement if we don’t need it.
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The definition of count_x() assumes that the char∗ is a C-style string, that is, that the pointer
points to a zero-terminated array of char.

In older code, 0 or NULL is typically used instead of nullptr. Howev er, using nullptr eliminates
potential confusion between integers (such as 0 or NULL) and pointers (such as nullptr).

The count_if() example is unnecessarily complicated. We can simplify it by testing for the
nullptr in one place only. We are not using the initializer part of the for-statement, so we can use the
simpler while-statement:

int count_x(char∗ p, char x)
// count the number of occurrences of x in p[]
// p is assumed to point to a zero-ter minated array of char (or to nothing)

{
int count = 0;
while (p) {

if (∗p==x)
++count;

++p;
}
return count;

}

The while-statement executes until its condition becomes false.
A test of a pointer (e.g., while (p)) is equivalent to comparing the pointer to the null pointer (e.g.,

while (p!=nullptr)).

1.9 Tests
C++ provides a conventional set of statements for expressing selection and looping. For example,
here is a simple function that prompts the user and returns a Boolean indicating the response:

bool accept()
{

cout << "Do you want to proceed (y or n)?\n"; // wr ite question

char answer = 0;
cin >> answer; // read answer

if (answer == 'y')
return true;

return false;
}

To match the << output operator (‘‘put to’’), the >> operator (‘‘get from’’) is used for input; cin is
the standard input stream (Chapter 8). The type of the right-hand operand of >> determines what
input is accepted, and its right-hand operand is the target of the input operation. The \n character at
the end of the output string represents a newline (§1.3).

Note that the definition of answer appears where it is needed (and not before that). A declara-
tion can appear anywhere a statement can.
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The example could be improved by taking an n (for ‘‘no’’) answer into account:

bool accept2()
{

cout << "Do you want to proceed (y or n)?\n"; // wr ite question

char answer = 0;
cin >> answer; // read answer

switch (answer) {
case 'y':

return true;
case 'n':

return false;
default:

cout << "I'll take that for a no.\n";
return false;

}
}

A switch-statement tests a value against a set of constants. The case constants must be distinct, and
if the value tested does not match any of them, the default is chosen. If no default is provided, no
action is taken if the value doesn’t match any case constant.

We don’t hav e to exit a case by returning from the function that contains its switch-statement.
Often, we just want to continue execution with the statement following the switch-statement. We
can do that using a break statement. As an example, consider an overly clever, yet primitive, parser
for a trivial command video game:

void action()
{

while (true) {
cout << "enter action:\n"; // request action
string act;
cin >> act; // rear characters into a string
Point delta {0,0}; // Point holds an {x,y} pair

for (char ch : act) {
switch (ch) {
case 'u': // up
case 'n': // nor th

++delta.y;
break;

case 'r': // right
case 'e': // east

++delta.x;
break;

// ... more actions ...
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default:
cout << "I freeze!\n";

}
move(current+delta∗scale);
update_display();

}
}

}

1.10 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapters 5-6, 9-10, and 12 of [Stroustrup,2013].
[2] Don’t panic! All will become clear in time; §1.1.
[3] You don’t hav e to know every detail of C++ to write good programs.
[4] Focus on programming techniques, not on language features.
[5] For the final word on language definition issues, see the ISO C++ standard; §14.1.3.
[6] ‘‘Package’’ meaningful operations as carefully named functions; §1.4.
[7] A function should perform a single logical operation; §1.4.
[8] Keep functions short; §1.4.
[9] Use overloading when functions perform conceptually the same task on different types; §1.4.
[10] If a function may have to be evaluated at compile time, declare it constexpr; §1.7.
[11] Avoid ‘‘magic constants;’’ use symbolic constants; §1.7.
[12] Declare one name (only) per declaration.
[13] Keep common and local names short, and keep uncommon and nonlocal names longer.
[14] Avoid similar-looking names.
[15] Avoid ALL_CAPS names.
[16] Prefer the {}-initializer syntax for declarations with a named type; §1.5.
[17] Prefer the = syntax for the initialization in declarations using auto; §1.5.
[18] Avoid uninitialized variables; §1.5.
[19] Keep scopes small; §1.6.
[20] Keep use of pointers simple and straightforward; §1.8.
[21] Use nullptr rather than 0 or NULL; §1.8.
[22] Don’t declare a variable until you have a value to initialize it with; §1.8, §1.9.
[23] Don’t say in comments what can be clearly stated in code.
[24] State intent in comments.
[25] Maintain a consistent indentation style.
[26] Avoid complicated expressions.
[27] Avoid narrowing conversions; §1.5.

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

2
User-Defined Types

Don’t Panic!
– Douglas Adams

• Introduction
• Structures
• Classes
• Unions
• Enumerations
• Advice

2.1 Introduction
We call the types that can be built from the fundamental types (§1.5), the const modifier (§1.7), and
the declarator operators (§1.8) built-in types. C++’s set of built-in types and operations is rich, but
deliberately low-level. They directly and efficiently reflect the capabilities of conventional com-
puter hardware. However, they don’t provide the programmer with high-level facilities to con-
veniently write advanced applications. Instead, C++ augments the built-in types and operations
with a sophisticated set of abstraction mechanisms out of which programmers can build such high-
level facilities. The C++ abstraction mechanisms are primarily designed to let programmers design
and implement their own types, with suitable representations and operations, and for programmers
to simply and elegantly use such types. Types built out of the built-in types using C++’s abstraction
mechanisms are called user-defined types. They are referred to as classes and enumerations. Most
of this book is devoted to the design, implementation, and use of user-defined types. The rest of
this chapter presents the simplest and most fundamental facilities for that. Chapters 4-5 are a more
complete description of the abstraction mechanisms and the programming styles they support.
Chapters 6-13 present an overview of the standard library, and since the standard library mainly
consists of user-defined types, they provide examples of what can be built using the language facili-
ties and programming techniques presented in Chapters 1-5.
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2.2 Structures
The first step in building a new type is often to organize the elements it needs into a data structure,
a struct:

struct Vector {
int sz; // number of elements
double∗ elem; // pointer to elements

};

This first version of Vector consists of an int and a double∗.
A variable of type Vector can be defined like this:

Vector v;

However, by itself that is not of much use because v’s elem pointer doesn’t point to anything. To be
useful, we must give v some elements to point to. For example, we can construct a Vector like this:

void vector_init(Vector& v, int s)
{

v.elem = new double[s]; // allocate an array of s doubles
v.sz = s;

}

That is, v’s elem member gets a pointer produced by the new operator and v’s sz member gets the
number of elements. The & in Vector& indicates that we pass v by non-const reference (§1.8); that
way, vector_init() can modify the vector passed to it.

The new operator allocates memory from an area called the free store (also known as dynamic
memory and heap). Objects allocated on the free store are independent of the scope from which
they are created and ‘‘live’’ until they are destroyed using the delete operator (§4.2.2).

A simple use of Vector looks like this:

double read_and_sum(int s)
// read s integers from cin and return their sum; s is assumed to be positive

{
Vector v;
vector_init(v,s); // allocate s elements for v
for (int i=0; i!=s; ++i)

cin>>v.elem[i]; // read into elements

double sum = 0;
for (int i=0; i!=s; ++i)

sum+=v.elem[i]; // take the sum of the elements
return sum;

}

There is a long way to go before our Vector is as elegant and flexible as the standard-library vector.
In particular, a user of Vector has to know every detail of Vector’s representation. The rest of this
chapter and the next two gradually improve Vector as an example of language features and tech-
niques. Chapter 9 presents the standard-library vector, which contains many nice improvements.
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I use vector and other standard-library components as examples
• to illustrate language features and design techniques, and
• to help you learn and use the standard-library components.

Don’t reinvent standard-library components, such as vector and string; use them.
We use . (dot) to access struct members through a name (and through a reference) and −> to

access struct members through a pointer. For example:

void f(Vector v, Vector& rv, Vector∗ pv)
{

int i1 = v.sz; // access through name
int i2 = rv.sz; // access through reference
int i4 = pv−>sz; // access through pointer

}

2.3 Classes
Having the data specified separately from the operations on it has advantages, such as the ability to
use the data in arbitrary ways. However, a tighter connection between the representation and the
operations is needed for a user-defined type to have all the properties expected of a ‘‘real type.’’ In
particular, we often want to keep the representation inaccessible to users, so as to ease use, guaran-
tee consistent use of the data, and allow us to later improve the representation. To do that we have
to distinguish between the interface to a type (to be used by all) and its implementation (which has
access to the otherwise inaccessible data). The language mechanism for that is called a class. A
class is defined to have a set of members, which can be data, function, or type members. The inter-
face is defined by the public members of a class, and private members are accessible only through
that interface. For example:

class Vector {
public:

Vector(int s) :elem{new double[s]}, sz{s} { } // constr uct a Vector
double& operator[](int i) { return elem[i]; } // element access: subscripting
int size() { return sz; }

private:
double∗ elem; // pointer to the elements
int sz; // the number of elements

};

Given that, we can define a variable of our new type Vector:

Vector v(6); // a Vector with 6 elements

We can illustrate a Vector object graphically:

6

Vector:

elem:

sz:
0: 1: 2: 3: 4: 5:

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

18 User-Defined Types Chapter 2

Basically, the Vector object is a ‘‘handle’’ containing a pointer to the elements (elem) plus the num-
ber of elements (sz). The number of elements (6 in the example) can vary from Vector object to
Vector object, and a Vector object can have a different number of elements at different times
(§4.2.3). However, the Vector object itself is always the same size. This is the basic technique for
handling varying amounts of information in C++: a fixed-size handle referring to a variable amount
of data ‘‘elsewhere’’ (e.g., on the free store allocated by new; §4.2.2). How to design and use such
objects is the main topic of Chapter 4.

Here, the representation of a Vector (the members elem and sz) is accessible only through the
interface provided by the public members: Vector(), operator[](), and siz e(). The read_and_sum()

example from §2.2 simplifies to:

double read_and_sum(int s)
{

Vector v(s); // make a vector of s elements
for (int i=0; i!=v.siz e(); ++i)

cin>>v[i]; // read into elements

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=v[i]; // take the sum of the elements
return sum;

}

A ‘‘function’’ with the same name as its class is called a constructor, that is, a function used to con-
struct objects of a class. So, the constructor, Vector(), replaces vector_init() from §2.2. Unlike an
ordinary function, a constructor is guaranteed to be used to initialize objects of its class. Thus,
defining a constructor eliminates the problem of uninitialized variables for a class.

Vector(int) defines how objects of type Vector are constructed. In particular, it states that it needs
an integer to do that. That integer is used as the number of elements. The constructor initializes
the Vector members using a member initializer list:

:elem{new double[s]}, sz{s}

That is, we first initialize elem with a pointer to s elements of type double obtained from the free
store. Then, we initialize sz to s.

Access to elements is provided by a subscript function, called operator[]. It returns a reference
to the appropriate element (a double&).

The siz e() function is supplied to give users the number of elements.
Obviously, error handling is completely missing, but we’ll return to that in §3.4. Similarly, we

did not provide a mechanism to ‘‘give back’’ the array of doubles acquired by new; §4.2.2 shows
how to use a destructor to elegantly do that.

There is no fundamental difference between a struct and a class; a struct is simply a class with
members public by default. For example, you can define constructors and other member functions
for a struct.
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2.4 Unions
A union is a struct in which all members are allocated at the same address so that the union occu-
pies only as much space as its largest member. Naturally, a union can hold a value for only one
member at a time. For example, consider a symbol table entry that holds a name and a value:

enum Type { str, num };

struct Entry {
char∗ name;
Type t;
char∗ s; // use s if t==str
int i; // use i if t==num

};

void f(Entry∗ p)
{

if (p−>t == str)
cout << p−>s;

// ...
}

The members s and i can never be used at the same time, so space is wasted. It can be easily recov-
ered by specifying that both should be members of a union, like this:

union Value {
char∗ s;
int i;

};

The language doesn’t keep track of which kind of value is held by a union, so the programmer must
do that:

struct Entry {
char∗ name;
Type t;
Value v; // use v.s if t==str; use v.i if t==num

};

void f(Entry∗ p)
{

if (p−>t == str)
cout << p−>v.s;

// ...
}

Maintaining the correspondence between a type field (here, t) and the type held in a union is error-
prone. To avoid errors, one can encapsulate a union so that the correspondence between a type field
and access to the union members is guaranteed. At the application level, abstractions relying on
such tagged unions are common and useful, but use of ‘‘naked’’ unions is best minimized.
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2.5 Enumerations
In addition to classes, C++ supports a simple form of user-defined type for which we can enumer-
ate the values:

enum class Color { red, blue , green };
enum class Traffic_light { green, yellow, red };

Color col = Color::red;
Traffic_light light = Traffic_light::red;

Note that enumerators (e.g., red) are in the scope of their enum class, so that they can be used
repeatedly in different enum classes without confusion. For example, Color::red is Color’s red

which is different from Traffic_light::red.
Enumerations are used to represent small sets of integer values. They are used to make code

more readable and less error-prone than it would have been had the symbolic (and mnemonic) enu-
merator names not been used.

The class after the enum specifies that an enumeration is strongly typed and that its enumerators
are scoped. Being separate types, enum classes help prevent accidental misuses of constants. In
particular, we cannot mix Traffic_light and Color values:

Color x = red; // error : which red?
Color y = Traffic_light::red; // error : that red is not a Color
Color z = Color::red; // OK

Similarly, we cannot implicitly mix Color and integer values:

int i = Color::red; // error : Color ::red is not an int
Color c = 2; // error : 2 is not a Color

By default, an enum class has only assignment, initialization, and comparisons (e.g., == and <; §1.5)
defined. However, an enumeration is a user-defined type so we can define operators for it:

Traffic_light& operator++(Traffic_light& t)
// prefix increment: ++

{
switch (t) {
case Traffic_light::green: return t=Traffic_light::yellow;
case Traffic_light::yellow: return t=Traffic_light::red;
case Traffic_light::red: return t=Traffic_light::green;
}

}

Traffic_light next = ++light; // next becomes Traffic_light::green

If you don’t want to explicitly qualify enumerator names and want enumerator values to be ints
(without the need for an explicit conversion), you can remove the class from enum class to get a
‘‘plain’’ enum. The enumerators from a ‘‘plain’’ enum are entered into the same scope as the name
of their enum and implicitly converts to their integer value. For example:
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enum Color { red, green, blue };
int col = green;

Here col gets the value 1. By default, the integer values of enumerators starts with 0 and increases
by one for each additional enumerator. The ‘‘plain’’ enums hav e been in C++ (and C) from the ear-
liest days, so even though they are less well behaved, they are common in current code.

2.6 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapter 8 of [Stroustrup,2013].
[2] Organize related data into structures (structs or classes); §2.2.
[3] Represent the distinction between an interface and an implemetation using a class; §2.3.
[4] A struct is simply a class with its members public by default; §2.3.
[5] Define constructors to guarantee and simplify initialization of classes; §2.3.
[6] Avoid ‘‘naked’’ unions; wrap them in a class together with a type field; §2.4.
[7] Use enumerations to represent sets of named constants; §2.5.
[8] Prefer class enums over ‘‘plain’’ enums to minimize surprises; §2.5.
[9] Define operations on enumerations for safe and simple use; §2.5.
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3
Modularity

Don’t interrupt me while I’m interrupting.
– Winston S. Churchill

• Introduction
• Separate Compilation
• Namespaces
• Error Handling

Exceptions; Invariants; Static Assertions
• Advice

3.1 Introduction
A C++ program consists of many separately developed parts, such as functions (§1.3), user-defined
types (Chapter 2), class hierarchies (§4.5), and templates (Chapter 5). The key to managing this is
to clearly define the interactions among those parts. The first and most important step is to distin-
guish between the interface to a part and its implementation. At the language level, C++ represents
interfaces by declarations. A declaration specifies all that’s needed to use a function or a type. For
example:

double sqrt(double); // the square root function takes a double and returns a double

class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};
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The key point here is that the function bodies, the function definitions, are ‘‘elsewhere.’’ For this
example, we might like for the representation of Vector to be ‘‘elsewhere’’ also, but we will deal
with that later (abstract types; §4.3). The definition of sqr t() will look like this:

double sqrt(double d) // definition of sqrt()
{

// ... algorithm as found in math textbook ...
}

For Vector, we need to define all three member functions:

Vector::Vector(int s) // definition of the constructor
:elem{new double[s]}, sz{s} // initialize members

{
}

double& Vector::operator[](int i) // definition of subscripting
{

return elem[i];
}

int Vector::siz e() // definition of size()
{

return sz;
}

We must define Vector’s functions, but not sqr t() because it is part of the standard library. Howev er,
that makes no real difference: a library is simply some ‘‘other code we happen to use’’ written with
the same language facilities as we use.

3.2 Separate Compilation
C++ supports a notion of separate compilation where user code sees only declarations of the types
and functions used. The definitions of those types and functions are in separate source files and
compiled separately. This can be used to organize a program into a set of semi-independent code
fragments. Such separation can be used to minimize compilation times and to strictly enforce sepa-
ration of logically distinct parts of a program (thus minimizing the chance of errors). A library is
often a collection of separately compiled code fragments (e.g., functions).

Typically, we place the declarations that specify the interface to a module in a file with a name
indicating its intended use. For example:

// Vector.h:

class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();
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private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

This declaration would be placed in a file Vector.h, and users will include that file, called a header
file, to access that interface. For example:

// user.cpp:

#include "Vector.h" // get Vector’s interface
#include <cmath> // get the the standard-librar y math function interface including sqrt()

using namespace std; // make std members visible (§3.3)

double sqrt_sum(Vector& v)
{

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=sqr t(v[i]); // sum of square roots
return sum;

}

To help the compiler ensure consistency, the .cpp file providing the implementation of Vector will
also include the .h file providing its interface:

// Vector.cpp:

#include "Vector.h" // get the interface

Vector::Vector(int s)
:elem{new double[s]}, sz{s} // initialize members

{
}

double& Vector::operator[](int i)
{

return elem[i];
}

int Vector::siz e()
{

return sz;
}

The code in user.cpp and Vector.cpp shares the Vector interface information presented in Vector.h,
but the two files are otherwise independent and can be separately compiled. Graphically, the pro-
gram fragments can be represented like this:
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Vector interface

#include "Vector.h"

use Vector

#include "Vector.h"

define Vector

Vector.h:

user.cpp: Vector.cpp:

Strictly speaking, using separate compilation isn’t a language issue; it is an issue of how best to
take advantage of a particular language implementation. However, it is of great practical impor-
tance. The best approach is to maximize modularity, represent that modularity logically through
language features, and then exploit the modularity physically through files for effective separate
compilation.

3.3 Namespaces
In addition to functions (§1.4), classes (§2.3), and enumerations (§2.5), C++ offers namespaces as a
mechanism for expressing that some declarations belong together and that their names shouldn’t
clash with other names. For example, I might want to experiment with my own complex number
type (§4.2.1, §12.4):

namespace My_code {
class complex {

// ...
};

complex sqr t(complex);
// ...

int main();
}

int My_code::main()
{

complex z {1,2};
auto z2 = sqrt(z);
std::cout << '{' << z2.real() << ',' << z2.imag() << "}\n";
// ...

};

int main()
{

return My_code::main();
}
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By putting my code into the namespace My_code, I make sure that my names do not conflict with
the standard-library names in namespace std (§3.3). The precaution is wise, because the standard
library does provide support for complex arithmetic (§4.2.1, §12.4).

The simplest way to access a name in another namespace is to qualify it with the namespace
name (e.g., std::cout and My_code::main). The ‘‘real main()’’ is defined in the global namespace,
that is, not local to a defined namespace, class, or function. To gain access to names in the stan-
dard-library namespace, we can use a using-directive:

using namespace std;

A using-directive makes names from the named namespace accessible as if they were local to the
scope in which we placed the directive. So after the using-directive for std, we can simply write
cout rather than std::std.

Namespaces are primarily used to organize larger program components, such as libraries. They
simplify the composition of a program out of separately developed parts.

3.4 Error Handling
Error handling is a large and complex topic with concerns and ramifications that go far beyond lan-
guage facilities into programming techniques and tools. However, C++ provides a few features to
help. The major tool is the type system itself. Instead of painstakingly building up our applications
from the built-in types (e.g., char, int, and double) and statements (e.g., if, while , and for), we build
more types that are appropriate for our applications (e.g., string, map, and reg ex) and algorithms
(e.g., sor t(), find_if(), and draw_all()). Such higher-level constructs simplify our programming, limit
our opportunities for mistakes (e.g., you are unlikely to try to apply a tree traversal to a dialog box),
and increase the compiler’s chances of catching such errors. The majority of C++ constructs are
dedicated to the design and implementation of elegant and efficient abstractions (e.g., user-defined
types and algorithms using them). One effect of this modularity and abstraction (in particular, the
use of libraries) is that the point where a run-time error can be detected is separated from the point
where it can be handled. As programs grow, and especially when libraries are used extensively,
standards for handling errors become important. It is a good idea to design and articulate a strategy
for error handling early on in the development of a program.

3.4.1 Exceptions

Consider again the Vector example. What ought to be done when we try to access an element that
is out of range for the vector from §2.3?

• The writer of Vector doesn’t know what the user would like to hav e done in this case (the
writer of Vector typically doesn’t even know in which program the vector will be running).

• The user of Vector cannot consistently detect the problem (if the user could, the out-of-range
access wouldn’t happen in the first place).

The solution is for the Vector implementer to detect the attempted out-of-range access and then tell
the user about it. The user can then take appropriate action. For example, Vector::operator[]() can
detect an attempted out-of-range access and throw an out_of_rang e exception:
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double& Vector::operator[](int i)
{

if (i<0 || size()<=i)
throw out_of_rang e{"Vector::operator[]"};

return elem[i];
}

The throw transfers control to a handler for exceptions of type out_of_rang e in some function that
directly or indirectly called Vector::operator[](). To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller. That is, the exception han-
dling mechanism will exit scopes and function as needed to get back to a caller that has expressed
interest in handling that kind of exception, invoking destructors (§4.2.2) along the way as needed.
For example:

void f(Vector& v)
{

// ...
tr y { // exceptions here are handled by the handler defined below

v[v.siz e()] = 7; // tr y to access beyond the end of v
}
catch (out_of_rang e) { // oops: out_of_range error

// ... handle range error ...
}
// ...

}

We put code for which we are interested in handling exceptions into a tr y-block. That attempted
assignment to v[v.siz e()] will fail. Therefore, the catch-clause providing a handler for out_of_rang e

will be entered. The out_of_rang e type is defined in the standard library (in <stdexcept>) and is in
fact used by some standard-library container access functions.

Use of the exception-handling mechanisms can make error handling simpler, more systematic,
and more readable. To achieve that don’t overuse tr y-statements. The main technique for making
error handling simple and systematic (called Resource Aquisition Is Initialization) is explained in
§4.2.2.

A function that should never throw an exception can be declared noexcept. For example:

void user(int sz) noexcept
{

Vector v(sz);
iota(&v[0],&v[sz],1); // fill v with 1,2,3,4...
// ...

}

If all good intent and planning fails, so that user() still throws, the standard-library function termi-

nate() is called to immediately terminate the program.
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3.4.2 Invariants

The use of exceptions to signal out-of-range access is an example of a function checking its argu-
ment and refusing to act because a basic assumption, a precondition, didn’t hold. Had we formally
specified Vector’s subscript operator, we would have said something like ‘‘the index must be in the
[0:siz e()) range,’’ and that was in fact what we tested in our operator[](). The [a:b) notation specifies
a half-open range, meaning that a is part of the range, but b is not. Whenever we define a function,
we should consider what its preconditions are and if feasible test them.

However, operator[]() operates on objects of type Vector and nothing it does makes any sense
unless the members of Vector have ‘‘reasonable’’ values. In particular, we did say ‘‘elem points to
an array of sz doubles’’ but we only said that in a comment. Such a statement of what is assumed
to be true for a class is called a class invariant, or simply an invariant. It is the job of a constructor
to establish the invariant for its class (so that the member functions can rely on it) and for the mem-
ber functions to make sure that the invariant holds when they exit. Unfortunately, our Vector con-
structor only partially did its job. It properly initialized the Vector members, but it failed to check
that the arguments passed to it made sense. Consider:

Vector v(−27);

This is likely to cause chaos.
Here is a more appropriate definition:

Vector::Vector(int s)
{

if (s<0)
throw length_error{};

elem = new double[s];
sz = s;

}

I use the standard-library exception length_error to report a non-positive number of elements
because some standard-library operations use that exception to report problems of this kind. If
operator new can’t find memory to allocate, it throws a std::bad_alloc. We can now write:

void test()
{

tr y {
Vector v(−27);

}
catch (std::length_error) {

// handle negative size
}
catch (std::bad_alloc) {

// handle memory exhaustion
}

}

You can define your own classes to be used as exceptions and have them carry arbitrary information
from a point where an error is detected to a point where it can be handled (§3.4.1).
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Often, a function has no way of completing its assigned task after an exception is thrown.
Then, ‘‘handling’’ an exception simply means doing some minimal local cleanup and rethrowing
the exception. To throw (rethrow) the exception caught in an exception handler, we simply write
throw;. For example:

void test()
{

tr y {
Vector v(−27);

}
catch (std::length_error) {

cout << "test failed: length error\n";
throw; // rethrow

}
catch (std::bad_alloc) {

// Ouch! test() is not designed to handle memory exhaustion
std::terminate(); // ter minate the program

}
}

The notion of invariants is central to the design of classes, and preconditions serve a similar role in
the design of functions. Invariants

• helps us to understand precisely what we want
• forces us to be specific; that gives us a better chance of getting our code correct (after

debugging and testing).
The notion of invariants underlies C++’s notions of resource management supported by construc-
tors (Chapter 4) and destructors (§4.2.2, §11.2).

3.4.3 Static Assertions

Exceptions report errors found at run time. If an error can be found at compile time, it is usually
preferable to do so. That’s what much of the type system and the facilities for specifying the inter-
faces to user-defined types are for. Howev er, we can also perform simple checks on other proper-
ties that are known at compile time and report failures as compiler error messages. For example:

static_asser t(4<=sizeof(int), "integers are too small"); // check integer size

This will write integ ers are too small if 4<=siz eof(int) does not hold, that is, if an int on this system
does not have at least 4 bytes. We call such statements of expectations assertions.

The static_asser t mechanism can be used for anything that can be expressed in terms of constant
expressions (§1.7). For example:

constexpr double C = 299792.458; // km/s

void f(double speed)
{

const double local_max = 160.0/(60∗60); // 160 km/h == 160.0/(60*60) km/s
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static_asser t(speed<C,"can't go that fast"); // error : speed must be a constant
static_asser t(local_max<C,"can't go that fast"); // OK

// ...
}

In general, static_asser t(A,S) prints S as a compiler error message if A is not true.
The most important uses of static_asser t come when we make assertions about types used as

parameters in generic programming (§5.4, §11.6).
For runtime-checked assertions, use exceptions.

3.5 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapters 13-15 of [Stroustrup,2013].
[2] Distinguish between declarations (used as interfaces) and definitions (used as implementa-

tions); §3.1.
[3] Use header files to represent interfaces and to emphasize logical structure; §3.2.
[4] #include a header in the source file that implements its functions; §3.2.
[5] Avoid non-inline function definitions in headers; §3.2.
[6] Use namespaces to express logical structure; §3.3.
[7] Use using-directives for transition, for foundational libraries (such as std), or within a local

scope; §3.3.
[8] Don’t put a using-directive in a header file; §3.3.
[9] Throw an exception to indicate that you cannot perform an assigned task; §3.4.
[10] Use exceptions for error handling; §3.4.
[11] Develop an error-handling strategy early in a design; §3.4.
[12] Use purpose-designed user-defined types as exceptions (not built-in types); §3.4.1.
[13] Don’t try to catch every exception in every function; §3.4.
[14] If your function may not throw, declare it noexcept; §3.4.
[15] Let a constructor establish an invariant, and throw if it cannot; §3.4.2.
[16] Design your error-handling strategy around invariants; §3.4.2.
[17] What can be checked at compile time is usually best checked at compile time (using

static_asser t); §3.4.3.
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Classes

Those types are not “abstract”;
they are as real as int and float.

– Doug McIlroy

• Introduction
• Concrete Types

An Arithmetic Type; A Container; Initializing Containers
• Abstract Types
• Virtual Functions
• Class Hierarchies

Explicit Overriding; Benefits from Hierarchies; Hierarchy Navigation; Avoiding
Resource Leaks

• Copy and Move
Copying Containers; Moving Containers; Essential Operations; Resource Management;
Suppressing Operations

• Advice

4.1 Introduction
This chapter and the next aim to give you an idea of C++’s support for abstraction and resource
management without going into a lot of detail:

• This chapter informally presents ways of defining and using new types (user-defined types).
In particular, it presents the basic properties, implementation techniques, and language facil-
ities used for concrete classes, abstract classes, and class hierarchies.

• The next chapter introduces templates as a mechanism for parameterizing types and algo-
rithms with (other) types and algorithms. Computations on user-defined and built-in types
are represented as functions, sometimes generalized to template functions and function
objects.
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These are the language facilities supporting the programming styles known as object-oriented pro-
gramming and generic programming. Chapters 6-13 follow up by presenting examples of standard-
library facilities and their use.

The central language feature of C++ is the class. A class is a user-defined type provided to rep-
resent a concept in the code of a program. Whenever our design for a program has a useful con-
cept, idea, entity, etc., we try to represent it as a class in the program so that the idea is there in the
code, rather than just in our head, in a design document, or in some comments. A program built out
of a well chosen set of classes is far easier to understand and get right than one that builds every-
thing directly in terms of the built-in types. In particular, classes are often what libraries offer.

Essentially all language facilities beyond the fundamental types, operators, and statements exist
to help define better classes or to use them more conveniently. By ‘‘better,’’ I mean more correct,
easier to maintain, more efficient, more elegant, easier to use, easier to read, and easier to reason
about. Most programming techniques rely on the design and implementation of specific kinds of
classes. The needs and tastes of programmers vary immensely. Consequently, the support for
classes is extensive. Here, we will just consider the basic support for three important kinds of
classes:

• Concrete classes (§4.2)
• Abstract classes (§4.3)
• Classes in class hierarchies (§4.5)

An astounding number of useful classes turn out to be of these three kinds. Even more classes can
be seen as simple variants of these kinds or are implemented using combinations of the techniques
used for these.

4.2 Concrete Types
The basic idea of concrete classes is that they behave ‘‘just like built-in types.’’ For example, a
complex number type and an infinite-precision integer are much like built-in int, except of course
that they hav e their own semantics and sets of operations. Similarly, a vector and a string are much
like built-in arrays, except that they are better behaved (§7.2, §8.3, §9.2).

The defining characteristic of a concrete type is that its representation is part of its definition. In
many important cases, such as a vector, that representation is only one or more pointers to data
stored elsewhere, but it is present in each object of a concrete class. That allows implementations
to be optimally efficient in time and space. In particular, it allows us to

• place objects of concrete types on the stack, in statically allocated memory, and in other
objects (§1.6);

• refer to objects directly (and not just through pointers or references);
• initialize objects immediately and completely (e.g., using constructors; §2.3); and
• copy objects (§4.6).

The representation can be private (as it is for Vector; §2.3) and accessible only through the member
functions, but it is present. Therefore, if the representation changes in any significant way, a user
must recompile. This is the price to pay for having concrete types behave exactly like built-in
types. For types that don’t change often, and where local variables provide much-needed clarity
and efficiency, this is acceptable and often ideal. To increase flexibility, a concrete type can keep
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major parts of its representation on the free store (dynamic memory, heap) and access them through
the part stored in the class object itself. That’s the way vector and string are implemented; they can
be considered resource handles with carefully crafted interfaces.

4.2.1 An Arithmetic Type

The ‘‘classical user-defined arithmetic type’’ is complex:

class complex {
double re, im; // representation: two doubles

public:
complex(double r, double i) :re{r}, im{i} {} // constr uct complex from two scalars
complex(double r) :re{r}, im{0} {} // constr uct complex from one scalar
complex() :re{0}, im{0} {} // default complex: {0,0}

double real() const { return re; }
void real(double d) { re=d; }
double imag() const { return im; }
void imag(double d) { im=d; }

complex& operator+=(complex z) { re+=z.re , im+=z.im; return ∗this; } // add to re and im
// and return the result

complex& operator−=(complex z) { re−=z.re , im−=z.im; return ∗this; }

complex& operator∗=(complex); // defined out-of-class somewhere
complex& operator/=(complex); // defined out-of-class somewhere

};

This is a slightly simplified version of the standard-library complex (§12.4). The class definition
itself contains only the operations requiring access to the representation. The representation is sim-
ple and conventional. For practical reasons, it has to be compatible with what Fortran provided 50
years ago, and we need a conventional set of operators. In addition to the logical demands, complex

must be efficient or it will remain unused. This implies that simple operations must be inlined.
That is, simple operations (such as constructors, +=, and imag()) must be implemented without func-
tion calls in the generated machine code. Functions defined in a class are inlined by default. It is
possible to explicitly require inlining by preceeding a function declaration with the keyword inline.
An industrial-strength complex (like the standard-library one) is carefully implemented to do appro-
priate inlining.

A constructor that can be invoked without an argument is called a default constructor. Thus,
complex() is complex’s default constructor. By defining a default constructor you eliminate the pos-
sibility of uninitialized variables of that type.

The const specifiers on the functions returning the real and imaginary parts indicate that these
functions do not modify the object for which they are called.

Many useful operations do not require direct access to the representation of complex, so they
can be defined separately from the class definition:
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complex operator+(complex a, complex b) { return a+=b; }
complex operator−(complex a, complex b) { return a−=b; }
complex operator−(complex a) { return {−a.real(), −a.imag()}; } // unar y minus
complex operator∗(complex a, complex b) { return a∗=b; }
complex operator/(complex a, complex b) { return a/=b; }

Here, I use the fact that an argument passed by value is copied, so that I can modify an argument
without affecting the caller’s copy, and use the result as the return value.

The definitions of == and != are straightforward:

bool operator==(complex a, complex b) // equal
{

return a.real()==b.real() && a.imag()==b.imag();
}

bool operator!=(complex a, complex b) // not equal
{

return !(a==b);
}

complex sqr t(complex); // the definition is elsewhere

// ...

Class complex can be used like this:

void f(complex z)
{

complex a {2.3}; // constr uct {2.3,0.0} from 2.3
complex b {1/a};
complex c {a+z∗complex{1,2.3}};
// ...
if (c != b)

c = −(b/a)+2∗b;
}

The compiler converts operators involving complex numbers into appropriate function calls. For
example, c!=b means operator!=(c,b) and 1/a means operator/(complex{1},a).

User-defined operators (‘‘overloaded operators’’) should be used cautiously and conventionally.
The syntax is fixed by the language, so you can’t define a unary /. Also, it is not possible to change
the meaning of an operator for built-in types, so you can’t redefine + to subtract ints.

4.2.2 A Container

A container is an object holding a collection of elements, so we call Vector a container because it is
the type of objects that are containers. As defined in §2.3, Vector isn’t an unreasonable container of
doubles: it is simple to understand, establishes a useful invariant (§3.4.2), provides range-checked
access (§3.4.1), and provides siz e() to allow us to iterate over its elements. However, it does have a
fatal flaw: it allocates elements using new but nev er deallocates them. That’s not a good idea
because although C++ defines an interface for a garbage collector (§4.6.4), it is not guaranteed that
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one is available to make unused memory available for new objects. In some environments you
can’t use a collector, and sometimes you prefer more precise control of destruction for logical or
performance reasons. We need a mechanism to ensure that the memory allocated by the construc-
tor is deallocated; that mechanism is a destructor:

class Vector {
private:

double∗ elem; // elem points to an array of sz doubles
int sz;

public:
Vector(int s) :elem{new double[s]}, sz{s} // constr uctor: acquire resources
{

for (int i=0; i!=s; ++i) // initialize elements
elem[i]=0;

}

˜Vector() { delete[] elem; } // destr uctor: release resources

double& operator[](int i);
int size() const;

};

The name of a destructor is the complement operator, ˜, followed by the name of the class; it is the
complement of a constructor. Vector’s constructor allocates some memory on the free store (also
called the heap or dynamic store) using the new operator. The destructor cleans up by freeing that
memory using the delete operator. This is all done without intervention by users of Vector. The
users simply create and use Vectors much as they would variables of built-in types. For example:

void fct(int n)
{

Vector v(n);

// ... use v ...

{
Vector v2(2∗n);
// ... use v and v2 ...

} // v2 is destroyed here

// ... use v ..

} // v is destroyed here

Vector obeys the same rules for naming, scope, allocation, lifetime, etc. (§1.6), as does a built-in
type, such as int and char. This Vector has been simplified by leaving out error handling; see §3.4.

The constructor/destructor combination is the basis of many elegant techniques. In particular, it
is the basis for most C++ general resource management techniques (§11.2). Consider a graphical
illustration of a Vector:
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6

Vector:

elem:

sz: 0 0 0 0 0 0
0: 1: 2: 3: 4: 5:

The constructor allocates the elements and initializes the Vector members appropriately. The de-
structor deallocates the elements. This handle-to-data model is very commonly used to manage
data that can vary in size during the lifetime of an object. The technique of acquiring resources in a
constructor and releasing them in a destructor, known as Resource Acquisition Is Initialization or
RAII, allows us to eliminate ‘‘naked new operations,’’ that is, to avoid allocations in general code
and keep them buried inside the implementation of well-behaved abstractions. Similarly, ‘‘naked
delete operations’’ should be avoided. Avoiding naked new and naked delete makes code far less
error-prone and far easier to keep free of resource leaks (§11.2).

4.2.3 Initializing Containers

A container exists to hold elements, so obviously we need convenient ways of getting elements into
a container. We can handle that by creating a Vector with an appropriate number of elements and
then assigning to them, but typically other ways are more elegant. Here, I just mention two
favorites:

• Initializer-list constructor: Initialize with a list of elements.
• push_back(): Add a new element at the end (at the back of) the sequence.

These can be declared like this:

class Vector {
public:

Vector(std::initializ er_list<double>); // initialize with a list of doubles
// ...
void push_back(double); // add element at end, increasing the size by one
// ...

};

The push_back() is useful for input of arbitrary numbers of elements. For example:

Vector read(istream& is)
{

Vector v;
for (double d; is>>d;) // read floating-point values into d

v.push_back(d); // add d to v
return v;

}

The input loop is terminated by an end-of-file or a formatting error. Until that happens, each num-
ber read is added to the Vector so that at the end, v’s size is the number of elements read. I used a
for-statement rather than the more conventional while-statement to keep the scope of d limited to the
loop. The way to provide Vector with a move constructor, so that returning a potentially huge
amount of data from read() is cheap, is explained in §4.6.2.
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The std::initializ er_list used to define the initializer-list constructor is a standard-library type
known to the compiler: when we use a {}-list, such as {1,2,3,4}, the compiler will create an object of
type initializ er_list to give to the program. So, we can write:

Vector v1 = {1,2,3,4,5}; // v1 has 5 elements
Vector v2 = {1.23, 3.45, 6.7, 8}; // v2 has 4 elements

Vector’s initializer-list constructor might be defined like this:

Vector::Vector(std::initializ er_list<double> lst) // initialize with a list
:elem{new double[lst.siz e()]}, sz{static_cast<int>(lst.siz e())}

{
copy(lst.begin(),lst.end(),elem); // copy from lst into elem (§10.6)

}

I use the ugly static_cast (§14.2.3) to convert the size of the initializer list to an int. This is pedantic
because the chance that the number of elements in a hand-written list is larger than the largest inte-
ger (32,767 for 16-bit integers and 2,147,483,647 for 32-bit integers) is rather low. Howev er, it is
worth remembering that the type system has no common sense. It knows about the possible values
of variables, rater than actual values, so it might complain where there is no actual violation. How-
ev er, sooner or later, such warnings will save the programmer from a bad error.

A static_cast is does not check the value it is converting; the programmer is trusted to use it cor-
rectly. This is not always a good assumption, so if in doubt, check the value. Explicit type conver-
sions (often called casts to remind you that they are used to prop up something broken) are best
avoided. Judicious use of the type system and well-designed libraries allow us to eliminate
unchecked cast in higher-level software.

4.3 Abstract Types
Types such as complex and Vector are called concrete types because their representation is part of
their definition. In that, they resemble built-in types. In contrast, an abstract type is a type that
completely insulates a user from implementation details. To do that, we decouple the interface
from the representation and give up genuine local variables. Since we don’t know anything about
the representation of an abstract type (not even its size), we must allocate objects on the free store
(§4.2.2) and access them through references or pointers (§1.8, §11.2.1).

First, we define the interface of a class Container which we will design as a more abstract ver-
sion of our Vector:

class Container {
public:

vir tual double& operator[](int) = 0; // pure virtual function
vir tual int size() const = 0; // const member function (§4.2.1)
vir tual ˜Container() {} // destr uctor (§4.2.2)

};

This class is a pure interface to specific containers defined later. The word vir tual means ‘‘may be
redefined later in a class derived from this one.’’ Unsurprisingly, a function declared vir tual is
called a virtual function. A class derived from Container provides an implementation for the
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Container interface. The curious =0 syntax says the function is pure virtual; that is, some class
derived from Container must define the function. Thus, it is not possible to define an object that is
just a Container; a Container can only serve as the interface to a class that implements its operator[]()

and siz e() functions. A class with a pure virtual function is called an abstract class.
This Container can be used like this:

void use(Container& c)
{

const int sz = c.size();

for (int i=0; i!=sz; ++i)
cout << c[i] << '\n';

}

Note how use() uses the Container interface in complete ignorance of implementation details. It
uses siz e() and [ ] without any idea of exactly which type provides their implementation. A class
that provides the interface to a variety of other classes is often called a polymorphic type.

As is common for abstract classes, Container does not have a constructor. After all, it does not
have any data to initialize. On the other hand, Container does have a destructor and that destructor
is vir tual. Again, that is common for abstract classes because they tend to be manipulated through
references or pointers, and someone destroying a Container through a pointer has no idea what
resources are owned by its implementation; see also §4.5.

A container that implements the functions required by the interface defined by the abstract class
Container could use the concrete class Vector:

class Vector_container : public Container { // Vector_container implements Container
Vector v;

public:
Vector_container(int s) : v(s) { } // Vector of s elements
˜Vector_container() {}

double& operator[](int i) { return v[i]; }
int size() const { return v.siz e(); }

};

The :public can be read as ‘‘is derived from’’ or ‘‘is a subtype of.’’ Class Vector_container is said to
be derived from class Container, and class Container is said to be a base of class Vector_container.
An alternative terminology calls Vector_container and Container subclass and superclass, respec-
tively. The derived class is said to inherit members from its base class, so the use of base and
derived classes is commonly referred to as inheritance.

The members operator[]() and siz e() are said to override the corresponding members in the base
class Container. The destructor (˜Vector_container()) overrides the base class destructor (˜Con-

tainer()). Note that the member destructor (˜Vector()) is implicitly invoked by its class’s destructor
(˜Vector_container()).

For a  function like use(Container&) to use a Container in complete ignorance of implementation
details, some other function will have to make an object on which it can operate. For example:
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void g()
{

Vector_container vc {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
use(vc);

}

Since use() doesn’t know about Vector_containers but only knows the Container interface, it will
work just as well for a different implementation of a Container. For example:

class List_container : public Container { // List_container implements Container
std::list<double> ld; // (standard-librar y) list of doubles (§9.3)

public:
List_container() { } // empty List
List_container(initializ er_list<double> il) : ld{il} { }
˜List_container() {}

double& operator[](int i);
int size() const { return ld.size(); }

};

double& List_container::operator[](int i)
{

for (auto& x : ld) {
if (i==0) return x;
−−i;

}
throw out_of_rang e("List container");

}

Here, the representation is a standard-library list<double>. Usually, I would not implement a con-
tainer with a subscript operation using a list, because performance of list subscripting is atrocious
compared to vector subscripting. However, here I just wanted to show an implementation that is
radically different from the usual one.

A function can create a List_container and have use() use it:

void h()
{

List_container lc = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
use(lc);

}

The point is that use(Container&) has no idea if its argument is a Vector_container, a List_container,
or some other kind of container; it doesn’t need to know. It can use any kind of Container. It knows
only the interface defined by Container. Consequently, use(Container&) needn’t be recompiled if the
implementation of List_container changes or a brand-new class derived from Container is used.

The flip side of this flexibility is that objects must be manipulated through pointers or references
(§4.6, §11.2.1).

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

42 Classes Chapter 4

4.4 Virtual Functions
Consider again the use of Container:

void use(Container& c)
{

const int sz = c.size();

for (int i=0; i!=sz; ++i)
cout << c[i] << '\n';

}

How is the call c[i] in use() resolved to the right operator[]()? When h() calls use(), List_container’s
operator[]() must be called. When g() calls use(), Vector_container’s operator[]() must be called. To
achieve this resolution, a Container object must contain information to allow it to select the right
function to call at run time. The usual implementation technique is for the compiler to convert the
name of a virtual function into an index into a table of pointers to functions. That table is usually
called the virtual function table or simply the vtbl. Each class with virtual functions has its own vtbl

identifying its virtual functions. This can be represented graphically like this:

v

Vector_container::operator[]()

Vector_container::siz e()

Vector_container::˜Vector_container()

vtbl:Vector_container:

ld

List_container::operator[]()

List_container::siz e()

List_container::˜List_container()

vtbl:List_container:

The functions in the vtbl allow the object to be used correctly even when the size of the object and
the layout of its data are unknown to the caller. The implementation of the caller needs only to
know the location of the pointer to the vtbl in a Container and the index used for each virtual func-
tion. This virtual call mechanism can be made almost as efficient as the ‘‘normal function call’’
mechanism (within 25%). Its space overhead is one pointer in each object of a class with virtual
functions plus one vtbl for each such class.

4.5 Class Hierarchies
The Container example is a very simple example of a class hierarchy. A class hierarchy is a set of
classes ordered in a lattice created by derivation (e.g., : public). We use class hierarchies to repre-
sent concepts that have hierarchical relationships, such as ‘‘A fire engine is a kind of a truck which
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is a kind of a vehicle’’ and ‘‘A smiley face is a kind of a circle which is a kind of a shape.’’ Huge
hierarchies, with hundreds of classes, that are both deep and wide are common. As a semi-realistic
classic example, let’s consider shapes on a screen:

Shape

Circle Triangle

Smiley

The arrows represent inheritance relationships. For example, class Circle is derived from class
Shape. To represent that simple diagram in code, we must first specify a class that defines the gen-
eral properties of all shapes:

class Shape {
public:

vir tual Point center() const =0; // pure virtual
vir tual void move(Point to) =0;

vir tual void draw() const = 0; // draw on current "Canvas"
vir tual void rotate(int angle) = 0;

vir tual ˜Shape() {} // destr uctor
// ...

};

Naturally, this interface is an abstract class: as far as representation is concerned, nothing (except
the location of the pointer to the vtbl) is common for every Shape. Giv en this definition, we can
write general functions manipulating vectors of pointers to shapes:

void rotate_all(vector<Shape∗>& v, int angle) // rotate v’s elements by angle degrees
{

for (auto p : v)
p−>rotate(angle);

}

To define a particular shape, we must say that it is a Shape and specify its particular properties
(including its virtual functions):

class Circle : public Shape {
public:

Circle(Point p, int rr); // constr uctor

Point center() const { return x; }
void move(Point to) { x=to; }
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void draw() const;
void rotate(int) {} // nice simple algorithm

private:
Point x; // center
int r; // radius

};

So far, the Shape and Circle example provides nothing new compared to the Container and
Vector_container example, but we can build further:

class Smiley : public Circle {  // use the circle as the base for a face
public:

Smiley(Point p, int r) : Circle{p,r}, mouth{nullptr} { }

˜Smiley()
{

delete mouth;
for (auto p : eyes)

delete p;
}

void move(Point to);

void draw() const;
void rotate(int);

void add_eye(Shape∗ s) { eyes.push_back(s); }
void set_mouth(Shape∗ s);
vir tual void wink(int i); // wink eye number i

// ...

private:
vector<Shape∗> eyes; // usually two eyes
Shape∗ mouth;

};

The push_back() member function adds its argument to the vector (here, ey es), increasing that
vector’s size by one.

We can now define Smiley::draw() using calls to Smiley’s base and member draw()s:

void Smiley::draw()
{

Circle::draw();
for (auto p : eyes)

p−>draw();
mouth−>draw();

}

Note the way that Smiley keeps its eyes in a standard-library vector and deletes them in its de-
structor. Shape’s destructor is vir tual and Smiley’s destructor overrides it. A virtual destructor is
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essential for an abstract class because an object of a derived class is usually manipulated through
the interface provided by its abstract base class. In particular, it may be deleted through a pointer to
a base class. Then, the virtual function call mechanism ensures that the proper destructor is called.
That destructor then implicitly invokes the destructors of its bases and members.

In this simplified example, it is the programmer’s task to place the eyes and mouth appropri-
ately within the circle representing the face.

We can add data members, operations, or both as we define a new class by derivation. This
gives great flexibility with corresponding opportunities for confusion and poor design.

4.5.1 Explicit Overriding

A function in a derived class overrides a virtual function in a base class if that function has exactly
the same name and type. In large hierachies, it is not always obvious if overriding was intended. A
function with a slightly different name or a slightly different type may be intended to override or it
may be intended to be a separate function. To avoid confusion in such cases, a programmer can
explicitly state that a function is meant to override. For example, I could (equivalently) have
defined Smiley like this:

class Smiley : public Circle {  // use the circle as the base for a face
public:

Smiley(Point p, int r) : Circle{p,r}, mouth{nullptr} { }

˜Smiley()
{

delete mouth;
for (auto p : eyes)

delete p;
}

void move(Point to) override;

void draw() const override;
void rotate(int) override;

void add_eye(Shape∗ s) { eyes.push_back(s); }
void set_mouth(Shape∗ s);
vir tual void wink(int i); // wink eye number i

// ...

private:
vector<Shape∗> eyes; // usually two eyes
Shape∗ mouth;

};

Now, had I mistyped move as mve, I would have gotten an error because no base of Smiley has a vir-
tual function called mve. Similarly, had I added override to the declaration of wink(), I would have
gotten an error message.
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4.5.2 Benefits from Hierarchies

A class hierarchy offers two kinds of benefits:
• Interface inheritance: An object of a derived class can be used wherever an object of a base

class is required. That is, the base class acts as an interface for the derived class. The Con-

tainer and Shape classes are examples. Such classes are often abstract classes.
• Implementation inheritance: A base class provides functions or data that simplifies the

implementation of derived classes. Smiley’s uses of Circle’s constructor and of Circle::draw()

are examples. Such base classes often have data members and constructors.
Concrete classes – especially classes with small representations – are much like built-in types: we
define them as local variables, access them using their names, copy them around, etc. Classes in
class hierarchies are different: we tend to allocate them on the free store using new, and we access
them through pointers or references. For example, consider a function that reads data describing
shapes from an input stream and constructs the appropriate Shape objects:

enum class Kind { circle, triangle , smiley };

Shape∗ read_shape(istream& is) // read shape descriptions from input stream is
{

// ... read shape header from is and find its Kind k ...

switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
return new Circle{p,r};

case Kind::triangle:
// read triangle data {Point,Point,Point} into p1, p2, and p3
return new Triangle{p1,p2,p3};

case Kind::smiley:
// read smiley data {Point,int,Shape,Shape,Shape} into p, r, e1 ,e2, and m
Smiley∗ ps = new Smiley{p,r};
ps−>add_eye(e1);
ps−>add_eye(e2);
ps−>set_mouth(m);
return ps;

}
}

A program may use that shape reader like this:

void user()
{

std::vector<Shape∗> v;
while (cin)

v.push_back(read_shape(cin));
draw_all(v); // call draw() for each element
rotate_all(v,45); // call rotate(45) for each element
for (auto p : v) // remember to delete elements

delete p;
}
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Obviously, the example is simplified – especially with respect to error handling – but it vividly
illustrates that user() has absolutely no idea of which kinds of shapes it manipulates. The user()

code can be compiled once and later used for new Shapes added to the program. Note that there are
no pointers to the shapes outside user(), so user() is responsible for deallocating them. This is done
with the delete operator and relies critically on Shape’s virtual destructor. Because that destructor is
virtual, delete invokes the destructor for the most derived class. This is crucial because a derived
class may have acquired all kinds of resources (such as file handles, locks, and output streams) that
need to be released. In this case, a Smiley deletes its ey es and mouth objects.

4.5.3 Hierarchy Navigation

The read_shape() function returns Shape∗ so that we can treat all Shapes alike. However, what can
we do if we want to use a member function that is only provided by a particular derived class, such
as Smiley’s wink()? We can ask ‘‘is this Shape a kind of Smiley?’’ using the dynamic_cast operator:

Shape∗ ps {read_shape(cin)};

if (Smiley∗ p = dynamic_cast<Smiley∗>(ps)) {
// ... is the Smiley pointer to by p ...

}
else {

// ... not a Smiley, try something else ...
}

If the object pointed to by the argument of dynamic_cast (here, ps) is not of the expected type (here,
Smiley) or a class derived from the expected type, dynamic_cast returns nullptr.

We use dynamic_cast to a pointer type when a pointer to an object of a different derived class is
a valid argument. We then test whether the result is nullptr. This test can often conveniently be
placed in the initialization of a variable in a condition.

When a different type is unacceptable, we can simply dynamic_cast to a reference type. If the
object is not of the expected type, bad_cast is thrown:

Shape∗ ps {read_shape(cin)};
Smiley& r {dynamic_cast<Smiley&>(∗ps)}; // somewhere, catch std::bad_cast

Code is cleaner when dynamic_cast is used with restraint. If we can avoid using type information,
we can write simpler and more efficient code, but occasionally type information is lost and must be
recovered. This typically happens when we pass an object to some system that accepts an interface
specified by a base class. When that system later passes the object back to use, we might have to
recover the original type. Operations similar to dynamic_cast are known as ‘‘is kind of’’ and ‘‘is
instance of’’ operations.

4.5.4 Avoiding Resource Leaks

Experienced programmers will notice that I left open two obvious opportunities for mistakes:
• A user might fail to delete the pointer returned by read_shape().
• The owner of a container of Shape pointers might not delete the objects pointed to.

In that sense, functions returning a pointer to an object allocated on the free store are dangerous.
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One solution to both problems is to return a standard-library unique_ptr (§11.2.1) rather than a
‘‘naked pointer’’ and store unique_ptrs in the container:

unique_ptr<Shape> read_shape(istream& is) // read shape descriptions from input stream is
{

// read shape header from is and find its Kind k

switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
return unique_ptr<Shape>{new Circle{p,r}}; // §11.2.1

// ...
}

void user()
{

vector<unique_ptr<Shape>> v;
while (cin)

v.push_back(read_shape(cin));
draw_all(v); // call draw() for each element
rotate_all(v,45); // call rotate(45) for each element

} // all Shapes implicitly destroyed

Now the object is owned by the unique_ptr which will delete the object when it is no longer needed,
that is, when its unique_ptr goes out of scope.

For the unique_ptr version of user() to work, we need versions of draw_all() and rotate_all() that
accept vector<unique_ptr<Shape>>s. Writing many such _all() functions could become tedious, so
§5.5 shows an alternative.

4.6 Copy and Move
By default, objects can be copied. This is true for objects of user-defined types as well as for built-
in types. The default meaning of copy is memberwise copy: copy each member. For example,
using complex from §4.2.1:

void test(complex z1)
{

complex z2 {z1}; // copy initialization
complex z3;
z3 = z2; // copy assignment
// ...

}

Now z1, z2, and z3 have the same value because both the assignment and the initialization copied
both members.

When we design a class, we must always consider if and how an object might be copied. For
simple concrete types, memberwise copy is often exactly the right semantics for copy. For some
sophisticated concrete types, such as Vector, memberwise copy is not the right semantics for copy,
and for abstract types it almost never is.
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4.6.1 Copying Containers

When a class is a resource handle – that is, when the class is responsible for an object accessed
through a pointer – the default memberwise copy is typically a disaster. Memberwise copy would
violate the resource handle’s inv ariant (§3.4.2). For example, the default copy would leave a copy
of a Vector referring to the same elements as the original:

void bad_copy(Vector v1)
{

Vector v2 = v1; // copy v1’s representation into v2
v1[0] = 2; // v2[0] is now also 2!
v2[1] = 3; // v1[1] is now also 3!

}

Assuming that v1 has four elements, the result can be represented graphically like this:

4

v1:

4

v2:

2 3

Fortunately, the fact that Vector has a destructor is a strong hint that the default (memberwise) copy
semantics is wrong and the compiler should at least warn against this example. We need to define
better copy semantics.

Copying of an object of a class is defined by two members: a copy constructor and a copy
assignment:

class Vector {
private:

double∗ elem; // elem points to an array of sz doubles
int sz;

public:
Vector(int s); // constr uctor: establish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

double& operator[](int i);
const double& operator[](int i) const;

int size() const;
};

A suitable definition of a copy constructor for Vector allocates the space for the required number of
elements and then copies the elements into it, so that after a copy each Vector has its own copy of
the elements:
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Vector::Vector(const Vector& a) // copy constr uctor
:elem{new double[a.sz]}, // allocate space for elements
sz{a.sz}

{
for (int i=0; i!=sz; ++i) // copy elements

elem[i] = a.elem[i];
}

The result of the v2=v1 example can now be presented as:

4

v1:

4

v2:

32

Of course, we need a copy assignment in addition to the copy constructor:

Vector& Vector::operator=(const Vector& a) // copy assignment
{

double∗ p = new double[a.sz];
for (int i=0; i!=a.sz; ++i)

p[i] = a.elem[i];
delete[] elem; // delete old elements
elem = p;
sz = a.sz;
return ∗this;

}

The name this is predefined in a member function and points to the object for which the member
function is called.

4.6.2 Moving Containers

We can control copying by defining a copy constructor and a copy assignment, but copying can be
costly for large containers. We avoid the cost of copying when we pass objects to a function by
using references, but we can’t return a reference to a local object as the result (the local object
would be destroyed by the time the caller got a chance to look at it). Consider:

Vector operator+(const Vector& a, const Vector& b)
{

if (a.size()!=b.siz e())
throw Vector_siz e_mismatch{};

Vector res(a.size());
for (int i=0; i!=a.size(); ++i)

res[i]=a[i]+b[i];
return res;

}
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Returning from a + involves copying the result out of the local variable res and into some place
where the caller can access it. We might use this + like this:

void f(const Vector& x, const Vector& y, const Vector& z)
{

Vector r;
// ...
r = x+y+z;
// ...

}

That would be copying a Vector at least twice (one for each use of the + operator). If a Vector is
large, say, 10,000 doubles, that could be embarrassing. The most embarrassing part is that res in
operator+() is never used again after the copy. We didn’t really want a copy; we just wanted to get
the result out of a function: we wanted to move a Vector rather than to copy it. Fortunately, we can
state that intent:

class Vector {
// ...

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

Vector(Vector&& a); // move constr uctor
Vector& operator=(Vector&& a); // move assignment

};

Given that definition, the compiler will choose the move constructor to implement the transfer of
the return value out of the function. This means that r=x+y+z will involve no copying of Vectors.
Instead, Vectors are just moved.

As is typical, Vector’s move constructor is trivial to define:

Vector::Vector(Vector&& a)
:elem{a.elem}, // "grab the elements" from a
sz{a.sz}

{
a.elem = nullptr; // now a has no elements
a.sz = 0;

}

The && means ‘‘rvalue reference’’ and is a reference to which we can bind an rvalue. The word
‘‘rvalue’’ is intended to complement ‘‘lvalue,’’ which roughly means ‘‘something that can appear on
the left-hand side of an assignment.’’ So an rvalue is – to a first approximation – a value that you
can’t assign to, such as an integer returned by a function call. Thus, an rvalue reference is a refer-
ence to something that nobody else can assign to, so that we can safely ‘‘steal’’ its value. The res

local variable in operator+() for Vectors is an example.
A move constructor does not take a const argument: after all, a move constructor is supposed to

remove the value from its argument. A move assignment is defined similarly.
A move operation is applied when an rvalue reference is used as an initializer or as the right-

hand side of an assignment.
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After a move, a moved-from object should be in a state that allows a destructor to be run. Typi-
cally, we should also allow assignment to a moved-from object.

Where the programmer knows that a value will not be used again, but the compiler can’t be
expected to be smart enough to figure that out, the programmer can be specific:

Vector f()
{

Vector x(1000);
Vector y(1000);
Vector z(1000);
z = x; // we get a copy
y = std::move(x); // we get a move
return z; // we get a move

};

The standard-library function move() returns doesn’t actually move anything. Instead, it returns a
reference to its argument from which we may move – an rvalue reference.

Just before the return we have:

nullptr 0

x:

1000

y:

1000

z:

1 2 ...1 2 ...

When z is destroyed, it too has been moved from (by the return) so that, like x, it is empty (it holds
no elements).

4.6.3 Essential Operations

Construction of objects plays a key role in many designs. This wide variety of uses is reflected in
the range and flexibility of the language features supporting initialization.

Constructors, destructors, and copy and move operations for a type are not logically separate.
We must define them as a matched set or suffer logical or performance problems. If a class X has a
destructor that performs a nontrivial task, such as free-store deallocation or lock release, the class is
likely to need the full complement of functions:

class X {
public:

X(Sometype); // ‘‘ordinar y constr uctor’’: create an object
X(); // default constructor
X(const X&); // copy constr uctor
X(X&&); // move constr uctor
X& operator=(const X&); // copy assignment: clean up target and copy
X& operator=(X&&); // move assignment: clean up target and move
˜X(); // destr uctor: clean up
// ...

};
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There are five situations in which an object is copied or moved:
• As the source of an assignment
• As an object initializer
• As a function argument
• As a function return value
• As an exception

In all cases, the copy or move constructor will be applied (unless it can be optimized away).
In addition to the initialization of named objects and objects on the free store, constructors are

used to initialize temporary objects and to implement explicit type conversion.
Except for the ‘‘ordinary constructor,’’ these special member functions will be generated by the

compiler as needed. If you want to be explicit about generating default implementations, you can:

class Y {
Public:

Y(Sometype);
Y(const Y&) = default; // I really do want the default copy constr uctor
Y(Y&&) = default; // and the default copy constr uctor
// ...

};

If you are explicit about some defaults, other default definitions will not be generated.
When a class has a pointer or a reference member, it is usually a good idea to be explicit about

copy of move operations. The reason is that a pointer or reference will point to something that the
class needs to delete, in which case the default copy would be wrong, or it points to something that
the class must not delete, in which case a reader of the code would like to know that.

A constructor taking a single argument defines a conversion from its argument type. For exam-
ple, complex (§4.2.1) provides a constructor from a double:

complex z1 = 3.14; // z1 becomes {3.14,0.0}
complex z2 = z1∗2; // z2 becomes {6.28,0.0}

Obviously, this is sometimes ideal, but not always. For example, Vector (§4.2.2) provides a con-
structor from an int:

Vector v1 = 7; // OK: v1 has 7 elements

This is typically considered unfortunate, and the standard-library vector does not allow this int-to-
vector ‘‘conversion.’’

The way to avoid this problem is to say that only explicit ‘‘conversion’’ is allowed; that is, we
can define the constructor like this:

class Vector {
public:

explicit Vector(int s); // no implicit conversion from int to Vector
// ...

};

That gives us:

Vector v1(7); // OK: v1 has 7 elements
Vector v2 = 7; // error : no implicit conversion from int to Vector
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When it comes to conversions, more types are like Vector than are like complex, so use explicit for
constructors that take a single argument unless there is a good reason not to.

4.6.4 Resource Management

By defining constructors, copy operations, move operations, and a destructor, a programmer can
provide complete control of the lifetime of a contained resource (such as the elements of a con-
tainer). Furthermore, a move constructor allows an object to move simply and cheaply from one
scope to another. That way, objects that we cannot or would not want to copy out of a scope can be
simply and cheaply moved out instead. Consider a standard-library thread representing a concur-
rent activity (§13.2) and a Vector of a million doubles. We can’t copy the former and don’t want to
copy the latter.

std::vector<thread> my_threads;

Vector init(int n)
{

thread t {heartbeat}; // run hear tbeat concurrently (on its own thread)
my_threads.push_back(move(t)); // move t into my_threads
// ... more initialization ...

Vector vec(n);
for (int i=0; i<vec.size(); ++i)

vec[i] = 777;
return vec; // move res out of init()

}

auto v = init(10000); // star t hear tbeat and initialize v

This makes resource handles, such as Vector and thread, an alternative to using pointers in many
cases. In fact, the standard-library ‘‘smart pointers,’’ such as unique_ptr, are themselves resource
handles (§11.2.1).

I used the standard-library vector to hold the threads because we don’t get to parameterize
Vector with an element type until §5.2.

In very much the same way as new and delete disappear from application code, we can make
pointers disappear into resource handles. In both cases, the result is simpler and more maintainable
code, without added overhead. In particular, we can achieve strong resource safety; that is, we can
eliminate resource leaks for a general notion of a resource. Examples are vectors holding memory,
threads holding system threads, and fstreams holding file handles.

In many languages, resource management is primarily delegated to a garbage collector. C++
also offers a garbage collection interface so that you can plug in a garbage collector. Howev er, I
consider garbage collection the last alternative after cleaner, more general, and better localized
alternatives to resource management have been exhausted.

Garbage collection is fundamentally a global memory management scheme. Clever implemen-
tations can compensate, but as systems are getting more distributed (think multicores, caches, and
clusters), locality is more important than ever.
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Also, memory is not the only resource. A resource is anything that has to be acquired and
(explicitly or implicitly) released after use. Examples are memory, locks, sockets, file handles, and
thread handles. A good resource management system handles all kinds of resources. Leaks must be
avoided in any long-running systems, but excessive resource retention can be almost as bad as a
leak. For example, if a system holds on to memory, locks, files, etc., for twice as long, the system
needs to be provisioned with potentially twice as many resources.

Before resorting to garbage collection, systematically use resource handles: Let each resource
have an owner in some scope and by default be released at the end of its owners scope. In C++,
this is known as RAII (Resource Acquisition Is Initialization) and is integrated with error handling
in the form of exceptions. Resources can be moved from scope to scope using move semantics or
‘‘smart pointers,’’ and shared ownership can be represented by ‘‘shared pointers’’ (§11.2.1).

In the C++ standard library, RAII is pervasive: for example, memory (string, vector, map,
unordered_map, etc.), files (ifstream, ofstream, etc.), threads (thread), locks (lock_guard, unique_lock,
etc.), and general objects (through unique_ptr and shared_ptr). The result is implicit resource man-
agement that is invisible in common use and leads to low resource retention durations.

4.6.5 Suppressing Operations

Using the default copy or move for a class in a hierarchy is typically a disaster: given only a pointer
to a base, we simply don’t know what members the derived class has (§4.3), so we can’t know how
to copy them. So, the best thing to do is usually to delete the default copy and move operations,
that is, to eliminate the default definitions of those two operations:

class Shape {
public:

Shape(const Shape&) =delete; // no copy operations
Shape& operator=(const Shape&) =delete;

Shape(Shape&&) =delete; // no move operations
Shape& operator=(Shape&&) =delete;

˜Shape();
// ...

};

Now an attempt to copy a Shape will be caught by the compiler. If you need to copy an object in a
class hierarchy, write a vir tual clone function.

In this particular case, if you forgot to delete a copy or move operation, no harm is done. A
move operation is not implicitly generated for a class where the user has explicitly declared a de-
structor, so you get a compiler error if you try to move a Shape. Furthermore, the generation of
copy operations is deprecated in this case (§14.2.3), so you should expect the compiler to issue a
warning if you try to copy a Shape.

A base class in a class hierarchy is just one example of an object we wouldn’t want to copy. A
resource handle generally cannot be copied just by copying its members (§4.6.1).

The =delete mechanism is general, that is, it can be used to suppress any operation.
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4.7 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapters 16-22 of [Stroustrup,2013].
[2] Express ideas directly in code; §4.1.
[3] A concrete type is the simplest kind of class. Where applicable, prefer a concrete type over

more complicated classes and over plain data structures; §4.2.
[4] Use concrete classes to represent simple concepts and performance-critical components;

§4.2.
[5] Define a constructor to handle initialization of objects; §4.2.1, §4.6.3.
[6] Make a function a member only if it needs direct access to the representation of a class;

§4.2.1.
[7] Define operators primarily to mimic conventional usage; §4.2.1.
[8] Use nonmember functions for symmetric operators; §4.2.1.
[9] Declare a member function that does not modify the state of its object const; §4.2.1.
[10] If a constructor acquires a resource, its class needs a destructor to release the resource;

§4.2.2.
[11] Avoid ‘‘naked’’ new and delete operations; §4.2.2.
[12] Use resource handles and RAII to manage resources; §4.2.2.
[13] If a class is a container, giv e it an initializer-list constructor; §4.2.3.
[14] Use abstract classes as interfaces when complete separation of interface and implementation

is needed; §4.3.
[15] Access polymorphic objects through pointers and references; §4.3.
[16] An abstract class typically doesn’t need a constructor; §4.3.
[17] Use class hierarchies to represent concepts with inherent hierarchical structure; §4.5.
[18] A class with a virtual function should have a virtual destructor; §4.5.
[19] Use override to make overriding explicit in large class hierarchies; §4.5.1.
[20] When designing a class hierarchy, distinguish between implementation inheritance and inter-

face inheritance; §4.5.2.
[21] Use dynamic_cast where class hierarchy navigation is unavoidable; §4.5.3.
[22] Use dynamic_cast to a reference type when failure to find the required class is considered a

failure; §4.5.3.
[23] Use dynamic_cast to a pointer type when failure to find the required class is considered a

valid alternative; §4.5.3.
[24] Use unique_ptr or shared_ptr to avoid forgetting to delete objects created using new; §4.5.4.
[25] Redefine or prohibit copying if the default is not appropriate for a type; §4.6.1, §4.6.5.
[26] Return containers by value (relying on move for efficiency); §4.6.2.
[27] For large operands, use const reference argument types; §4.6.2.
[28] If a class has a destructor, it probably needs user-defined or deleted copy and move opera-

tions; §4.6.5.
[29] Control construction, copy, move, and destruction of objects; §4.6.3.
[30] Design constructors, assignments, and the destructor as a matched set of operations; §4.6.3.
[31] If a default constructor, assignment, or destructor is appropriate, let the compiler generate it

(don’t rewrite it yourself); §4.6.3.
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[32] By default, declare single-argument constructors explicit; §4.6.3.
[33] If a class has a pointer or reference member, it probably needs a destructor and non-default

copy operations; §4.6.3.
[34] Provide strong resource safety; that is, never leak anything that you think of as a resource;

§4.6.4.
[35] If a class is a resource handle, it needs a constructor, a destructor, and non-default copy oper-

ations; §4.6.4.
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5.1 Introduction
Someone who wants a vector is unlikely always to want a vector of doubles. A vector is a general
concept, independent of the notion of a floating-point number. Consequently, the element type of a
vector ought to be represented independently. A template is a class or a function that we parame-
terize with a set of types or values. We use templates to represent concepts that are best understood
as something very general from which we can generate specific types and functions by specifying
arguments, such as the element type double.

5.2 Parameterized Types
We can generalize our vector-of-doubles type to a vector-of-anything type by making it a template

and replacing the specific type double with a parameter. For example:
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template<typename T>
class Vector {
private:

T∗ elem; // elem points to an array of sz elements of type T
int sz;

public:
explicit Vector(int s); // constr uctor: establish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

// ... copy and move operations ...

T& operator[](int i);
const T& operator[](int i) const;
int size() const { return sz; }

};

The template<typename T> prefix makes T a parameter of the declaration it prefixes. It is C++’s ver-
sion of the mathematical ‘‘for all T’’ or more precisely ‘‘for all types T.’’ Using class to introduce a
type parameter is equivalent to using typename, and in older code we often see template<class T> as
the prefix.

The member functions might be defined similarly:

template<typename T>
Vector<T>::Vector(int s)
{

if (s<0)
throw Negative_siz e{};

elem = new T[s];
sz = s;

}

template<typename T>
const T& Vector<T>::operator[](int i) const
{

if (i<0 || size()<=i)
throw out_of_rang e{"Vector::operator[]"};

return elem[i];
}

Given these definitions, we can define Vectors like this:

Vector<char> vc(200); // vector of 200 characters
Vector<string> vs(17); // vector of 17 strings
Vector<list<int>> vli(45); // vector of 45 lists of integers

The >> in Vector<list<int>> terminates the nested template arguments; it is not a misplaced input
operator. It is not (as in C++98) necessary to place a space between the two >s.

We can use Vectors like this:
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void write(const Vector<string>& vs) // Vector of some strings
{

for (int i = 0; i!=vs.size(); ++i)
cout << vs[i] << '\n';

}

To support the range-for loop for our Vector, we must define suitable begin() and end() functions:

template<typename T>
T∗ begin(Vector<T>& x)
{

return x.size() ? &x[0] : nullptr; // pointer to first element or nullptr
}

template<typename T>
T∗ end(Vector<T>& x)
{

return begin(x)+x.size(); // pointer to one-past-last element
}

Given those, we can write:

void f2(Vector<string>& vs) // Vector of some strings
{

for (auto& s : vs)
cout << s << '\n';

}

Similarly, we can define lists, vectors, maps (that is, associative arrays), unordered maps (that is,
hash tables), etc., as templates (Chapter 9).

Templates are a compile-time mechanism, so their use incurs no run-time overhead compared to
hand-crafted code. In fact, the code generated for Vector<double> is identical to the code generated
for the version of Vector from Chapter 4. Furthermore, the code generated for the standard-library
vector<double> is likely to be better (because more effort has gone into its implementation).

In addition to type arguments, a template can take value arguments. For example:

template<typename T, int N>
struct Buffer {

using value_type = T;
constexpr int size() { return N; }
T[N];
// ...

};

The alias (value_type) and the constexpr function are provided to allow users (read-only) access to
the template arguments.

Value arguments are useful in many contexts. For example, Buffer allows us to create arbitrarily
sized buffers with no overheads from the use of free store (dynamic memory):
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Buffer<char,1024> glob; // global buffer of characters (statically allocated)

void fct()
{

Buffer<int,10> buf; // local buffer of integers (on the stack)
// ...

}

A template value argument must be a constant expression.

5.3 Function Templates
Templates have many more uses than simply parameterizing a container with an element type. In
particular, they are extensively used for parameterization of both types and algorithms in the stan-
dard library (§9.6, §10.6). For example, we can write a function that calculates the sum of the ele-
ment values of any container like this:

template<typename Container, typename Value>
Value sum(const Container& c, Value v)
{

for (auto x : c)
v+=x;

return v;
}

The Value template argument and the function argument v are there to allow the caller to specify the
type and initial value of the accumulator (the variable in which to accumulate the sum):

void user(Vector<int>& vi, std::list<double>& ld, std::vector<complex<double>>& vc)
{

int x = sum(vi,0); // the sum of a vector of ints (add ints)
double d = sum(vi,0.0); // the sum of a vector of ints (add doubles)
double dd = sum(ld,0.0); // the sum of a list of doubles
auto z = sum(vc,complex<double>{}); // the sum of a vector of complex<double>

// the initial value is {0.0,0.0}
}

The point of adding ints in a double would be to gracefully handle a number larger than the largest
int. Note how the types of the template arguments for sum<T,V> are deduced from the function
arguments. Fortunately, we do not need to explicitly specify those types.

This sum() is a simplified version of the standard-library accumulate() (§12.3).

5.4 Concepts and Generic Programming
What are templates for? In other words, what programming techniques are effective when you use
templates? Templates offer:

• The ability to pass types (as well as values and templates) as arguments without loss of
information. This implies excellent opportunities for inlining, of which current
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implementations take great advantage.
• Delayed type checking (done at instantiation time). This implies opportunities to weave

together information from different contexts.
• The ability to pass constant values as arguments. This implies the ability to do compile-time

computation.
In other words, templates provide a powerful mechanism for compile-time computation and type
manipulation that can lead to very compact and efficient code. Remember that types (classes) can
contain both code and values.

The first and most common use of templates is to support generic programming, that is, pro-
gramming focused on the design, implementation, and use of general algorithms. Here, ‘‘general’’
means that an algorithm can be designed to accept a wide variety of types as long as they meet the
algorithm’s requirements on its arguments. The template is C++’s main support for generic pro-
gramming. Templates provide (compile-time) parametric polymorphism.

Consider the sum() from §5.3. It can be invoked for any data structure that supports begin() and
end() so that the range-for will work. Such structures include the standard-library vector, list, and
map. Furthermore, the element type of the data structure is limited only by its use: it must be a type
that we can add to the Value argument. Examples are ints, doubles, and Matrixes (for any reasonable
definition of Matrix). We could say that the sum() algorithm is generic in two dimensions: the type
of the data structure used to store elements (‘‘the container’’) and the type of elements.

So, sum() requires that its first template argument is some kind of container and its second tem-
plate argument is some kind of number. We call such requirements concepts. Unfortunately, con-
cepts cannot be expressed directly in C++11. All we can say is that the template argument for
sum() must be types. There are techniques for checking concepts and proposals for direct language
support for concepts [Stroustrup,2013] [Sutton,2012], but both are beyond the scope of this thin
book.

Good, useful concepts are fundamental and are discovered more than they are designed. Exam-
ples are integer and floating-point number (as defined even in Classic C), more general mathemati-
cal concepts such as field and vector space, and container. They represent the fundamental con-
cepts of a field of application. Identifying and formalizing to the degree necessary for effective
generic programming can be a challenge.

For basic use, consider the concept Regular. A type is regular when it behaves much like an int

or a vector. An object of a regular type
• can be default constructed.
• can be copied (with the usual semantics of copy yielding two objects that are independent

and compare equal) using a constructor or an assignment.
• can be compared using == and !=.
• doesn’t suffer technical problems from overly clever programming tricks.

A string is another example of a regular type. Like int, string is also Ordered. That is, two strings
can be compared using <, <=, >, and >= with the appropriate semantics. Concepts is not just a syn-
tactic notion, it is fundamentally about semantics. For example, don’t define + to divide; that would
not match the requirements for any reasonable number.
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5.5 Function Objects
One particularly useful kind of template is the function object (sometimes called a functor), which
is used to define objects that can be called like functions. For example:

template<typename T>
class Less_than {

const T val; // value to compare against
public:

Less_than(const T& v) :val(v) { }
bool operator()(const T& x) const { return x<val; } // call operator

};

The function called operator() implements the ‘‘function call,’’ ‘‘call,’’ or ‘‘application’’ operator ().
We can define named variables of type Less_than for some argument type:

Less_than<int> lti {42}; // lti(i) will compare i to 42 using < (i<42)
Less_than<string> lts {"Backus"}; // lts(s) will compare s to "Backus" using < (s<"Backus")

We can call such an object, just as we call a function:

void fct(int n, const string & s)
{

bool b1 = lti(n); // tr ue if n<42
bool b2 = lts(s); // tr ue if s<"Backus"
// ...

}

Such function objects are widely used as arguments to algorithms. For example, we can count the
occurrences of values for which a predicate returns true:

template<typename C, typename P>
int count(const C& c, P pred)
{

int cnt = 0;
for (const auto& x : c)

if (pred(x))
++cnt;

return cnt;
}

A predicate is something that we can invoke to return true or false. For example:

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x
<< ": " << count(vec,Less_than<int>{x})
<< '\n';

cout << "number of values less than " << s
<< ": " << count(lst,Less_than<string>{s})
<< '\n';

}

Here, Less_than<int>{x} constructs an object for which the call operator compares to the int called x;
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Less_than<string>{s} constructs an object that compares to the string called s. The beauty of these
function objects is that they carry the value to be compared against with them. We don’t hav e to
write a separate function for each value (and each type), and we don’t hav e to introduce nasty
global variables to hold values. Also, for a simple function object like Less_than inlining is simple,
so that a call of Less_than is far more efficient than an indirect function call. The ability to carry
data plus their efficiency make function objects particularly useful as arguments to algorithms.

Function objects used to specify the meaning of key operations of a general algorithm (such as
Less_than for count()) are often referred to as policy objects.

We hav e to define Less_than separately from its use. That could be seen as inconvenient. Con-
sequently, there is a notation for implicitly generating function objects:

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x
<< ": " << count(vec,[&](int a){ return a<x; })
<< '\n';

cout << "number of values less than " << s
<< ": " << count(lst,[&](const string& a){ return a<s; })
<< '\n';

}

The notation [&](int a){ return a<x; } is called a lambda expression. It generates a function object
exactly like Less_than<int>{x}. The [&] is a capture list specifying that local names used (such as x)
will be accessed through references. Had we wanted to ‘‘capture’’ only x, we could have said so:
[&x]. Had we wanted to give the generated object a copy of x, we could have said so: [=x]. Capture
nothing is [ ], capture all local names used by reference is [&], and capture all local names used by
value is [=].

Using lambdas can be convenient and terse, but also obscure. For nontrivial actions (say, more
than a simple expression), I prefer to name the operation so as to more clearly state its purpose and
to make it available for use in several places in a program.

In §4.5.4, we noted the annoyance of having to write many functions to perform operations on
elements of vectors of pointers and unique_ptrs, such as draw_all() and rotate_all(). Function objects
(in particular, lambdas) can help by allowing us to separate the traversal of the container from the
specification of what is to be done with each element.

First, we need a function that applies an operation to each object pointed to by the elements of a
container of pointers:

template<typename C, typename Oper>
void for_all(C& c, Oper op) // assume that C is a container of pointers
{

for (auto& x : c)
op(∗x); // pass op() a reference to each element pointed to

}

Now, we can write a version of user() from §4.5 without writing a set of _all functions:
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void user()
{

vector<unique_ptr<Shape>> v;
while (cin)

v.push_back(read_shape(cin));
for_all(v,[](Shape& s){ s.draw(); }); // draw_all()
for_all(v,[](Shape& s){ s.rotate(45); }); // rotate_all(45)

}

I pass a reference to Shape to a lambda so that the lambda doesn’t hav e to care exactly how the
objects are stored in the container. In particular, those for_all() calls would still work if I changed v

to a vector<Shape∗>.

5.6 Variadic Templates
A template can be defined to accept an arbitrary number of arguments of arbitrary types. Such a
template is called a variadic template. For example:

void f() { } // do nothing

template<typename T, typename ... Tail>
void f(T head, Tail... tail)
{

g(head); // do something to head
f(tail...); // tr y again with tail

}

The key to implementing a variadic template is to note that when you pass a list of arguments to it,
you can separate the first argument from the rest. Here, we do something to the first argument (the
head) and then recursively call f() with the rest of the arguments (the tail). The ellipsis, ..., is used to
indicate ‘‘the rest’’ of a list. Eventually, of course, tail will become empty and we need a separate
function to deal with that.

We can call this f() like this:

int main()
{

cout << "first: ";
f(1,2.2,"hello");

cout << "\nsecond: ";
f(0.2,'c',"yuck!",0,1,2);
cout << "\n";

}

This would call f(1,2.2,"hello"), which will call f(2.2,"hello"), which will call f("hello"), which will call
f(). What might the call g(head) do? Obviously, in a real program it will do whatever we wanted
done to each argument. For example, we could make it write its argument (here, head) to output:
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template<typename T>
void g(T x)
{

cout << x << " ";
}

Given that, the output will be:

first: 1 2.2 hello
second: 0.2 c yuck! 0 1 2

It seems that f() is a simple variant of printf() printing arbitrary lists or values – implemented in three
lines of code plus their surrounding declarations.

The strength of variadic templates (sometimes just called variadics) is that they can accept any
arguments you care to give them. The weakness is that the type checking of the interface is a possi-
bly elaborate template program.

Because of their flexibility, variadic templates are widely used in the standard library.

5.7 Aliases
Surprisingly often, it is useful to introduce a synonym for a type or a template. For example, the
standard header <cstddef> contains a definition of the alias siz e_t, maybe:

using size_t = unsigned int;

The actual type named siz e_t is implementation-dependent, so in another implementation siz e_t

may be an unsigned long. Having the alias siz e_t allows the programmer to write portable code.
It is very common for a parameterized type to provide an alias for types related to their template

arguments. For example:

template<typename T>
class Vector {
public:

using value_type = T;
// ...

};

In fact, every standard-library container provides value_type as the name of its value type (Chapter
9). This allows us to write code that will work for every container that follows this convention. For
example:

template<typename C>
using Element_type = typename C::value_type; // the type of C’s elements

template<typename Container>
void algo(Container& c)
{

Vector<Element_type<Container>> vec; // keep results here
// ...

}
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The aliasing mechanism can be used to define a new template by binding some or all template argu-
ments. For example:

template<typename Key, typename Value>
class Map {

// ...
};

template<typename Value>
using String_map = Map<string,Value>;

String_map<int> m; // m is a Map<str ing,int>

5.8 Template Compilation Model
The type checking provided for templates checks the use of arguments in the template definition
rather than against an explicit interface (in a template declaration). This provides a compile-time
variant of what is often called duck typing (‘‘If it walks like a duck and it quacks like a duck, it’s a
duck’’). Or – using more technical terminology – we operate on values, and the presence and
meaning of an operation depend solely on its operand values. This differs from the alternative view
that objects have types, which determine the presence and meaning of operations. Values ‘‘live’’ in
objects. This is the way objects (e.g., variables) work in C++, and only values that meet an object’s
requirements can be put into it. What is done at compile time using templates does not involve
objects, only values.

The practical effect of this is that to use a template, its definition (not just its declaration) must
be in scope. For example, the standard header <vector> holds the definition of vector. An unfortu-
nate side effect is that a type error can be found uncomfortably late in the compilation process and
can yield spectacularly bad error messages because the compiler found the problem by combining
information from several places in the program.

5.9 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapters 20-29 of [Stroustrup,2013].
[2] Use templates to express algorithms that apply to many argument types; §5.1.
[3] Use templates to express containers; §5.2.
[4] Use templates to raise the level of abstraction of code; §5.2.
[5] When defining a template, first design and debug a non-template version; later generalize by

adding parameters.
[6] Templates are type-safe, but checking happens too late; §5.4.
[7] A template can pass argument types without loss of information.
[8] Use function templates to deduce class template argument types; §5.3.
[9] Templates provide a general mechanism for compile-time programming; §5.4.
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[10] When designing a template, carefully consider the concepts (requirements) assumed for its
template arguments; §5.4.

[11] Use concepts as a design tool; §5.4.
[12] Use function objects as arguments to algoritms; §5.5.
[13] Use a lambda if you need a simple function object in one place only; §5.5.
[14] A virtual function member cannot be a template member function.
[15] Use template aliases to simplify notation and hide implementation details; §5.7.
[16] Use variadic templates when you need a function that takes a variable number of arguments

of a variety of types; §5.6.
[17] Don’t use variadic templates for homogeneous argument lists (prefer initializer lists for that);

§5.6.
[18] To use a template, make sure its definition (not just its declaration) is in scope; §5.8.
[19] Templates offer compile-time ‘‘duck typing’’; §5.8.
[20] There is no separate compilation of templates: #include template definitions in every transla-

tion unit that uses them.
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6
Library Overview

Why waste time learning
when ignorance is instantaneous?

– Hobbes

• Introduction
• Standard-Library Components
• Standard-Library Headers and Namespace
• Advice

6.1 Introduction
No significant program is written in just a bare programming language. First, a set of libraries is
developed. These then form the basis for further work. Most programs are tedious to write in the
bare language, whereas just about any task can be rendered simple by the use of good libraries.

Continuing from Chapters 1-5, Chapters 6-13 give a quick tour of key standard-library facilities.
I very briefly present useful standard-library types, such as string, ostream, vector, map,

unique_ptr, thread, reg ex, and complex, as well as the most common ways of using them. As in
Chapters 1-5, you are strongly encouraged not to be distracted or discouraged by an incomplete
understanding of details. The purpose of this chapter is to convey a basic understanding of the
most useful library facilities.

The specification of the standard library is almost two thirds of the ISO C++ standard. Explore
it, and prefer it to home-made alternatives. Much thought has gone into its design, more still into
its implementations, and much effort will go into its maintenance and extension.

The standard-library facilities described in this book are part of every complete C++ implemen-
tation. In addition to the standard-library components, most implementations offer ‘‘graphical user
interface’’ systems (GUIs), Web interfaces, database interfaces, etc. Similarly, most application-
development environments provide ‘‘foundation libraries’’ for corporate or industrial ‘‘standard’’
development and/or execution environments. Here, I do not describe such systems and libraries.
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The intent is to provide a self-contained description of C++ as defined by the standard and to keep
the examples portable. Naturally, a programmer is encouraged to explore the more extensive facili-
ties available on most systems.

6.2 Standard-Library Components
The facilities provided by the standard library can be classified like this:

• Run-time language support (e.g., for allocation and run-time type information).
• The C standard library (with very minor modifications to minimize violations of the type

system).
• Strings (with support for international character sets and localization); see §7.2.
• Support for regular expression matching; see §7.3.
• I/O streams is an extensible framework for input and output to which users can add their

own types, streams, buffering strategies, locales, and character sets.
• A framework of containers (such as vector and map) and algorithms (such as find(), sor t(),

and merge()); see Chapter 9 and Chapter 10. This framework, conventionally called the STL
[Stepanov,1994], is extensible so users can add their own containers and algorithms.

• Support for numerical computation (such as standard mathematical functions, complex
numbers, vectors with arithmetic operations, and random number generators); see §4.2.1
and Chapter 12.

• Support for concurrent programming, including threads and locks; see Chapter 13. The con-
currency support is foundational so that users can add support for new models of concur-
rency as libraries.

• Utilities to support template metaprogramming (e.g., type traits; §11.6), STL-style generic
programming (e.g., pair; §11.3.3), and general programming (e.g., clock; §11.4).

• ‘‘Smart pointers’’ for resource management (e.g., unique_ptr and shared_ptr; §11.2.1) and an
interface to garbage collectors (§4.6.4).

• Special-purpose containers, such as array (§11.3.1), bitset (§11.3.2), and tuple (§11.3.3).
The main criteria for including a class in the library were that:

• it could be helpful to almost every C++ programmer (both novices and experts),
• it could be provided in a general form that did not add significant overhead compared to a

simpler version of the same facility, and
• that simple uses should be easy to learn (relative to the inherent complexity of their task).

Essentially, the C++ standard library provides the most common fundamental data structures
together with the fundamental algorithms used on them.

6.3 Standard-Library Headers and Namespace
Every standard-library facility is provided through some standard header. For example:

#include<string>
#include<list>

This makes the standard string and list available.
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The standard library is defined in a namespace (§3.3) called std. To use standard library facili-
ties, the std:: prefix can be used:

std::string s {"Four legs Good; two legs Baaad!"};
std::list<std::string> slogans {"War is Peace", "Freedom is Slaver y", "Ignorance is Strength"};

For simplicity, I will rarely use the std:: prefix explicitly in examples. Neither will I always
#include the necessary headers explicitly. To compile and run the program fragments here, you
must #include the appropriate headers and make the names they declare accessible. For example:

#include<string> // make the standard string facilities accessible
using namespace std; // make std names available without std:: prefix

string s {"C++ is a general−purpose programming language"}; // OK: string is std::string

It is generally in poor taste to dump every name from a namespace into the global namespace.
However, in this book, I use the standard library exclusively and it is good to know what it offers.

Here is a selection of standard-library headers, all supplying declarations in namespace std:

Selected Standard Library Headers

<algorithm> copy(), find(), sor t() Chapter 10 §iso.25
<array> array §11.3.1 §iso.23.3.2
<chrono> duration, time_point §11.4 §iso.20.11.2
<cmath> sqrt(), pow() §12.2 §iso.26.8
<complex> complex, sqr t(), pow() §12.4 §iso.26.8
<forward_list> forward_list §9.6 §iso.23.3.4
<fstream> fstream, ifstream, ofstream §8.7 §iso.27.9.1
<future> future, promise §13.7 §iso.30.6
<ios> hex,dec,scientific,fixed,defaultfloat §8.6 §iso.27.5
<iostream> istream, ostream, cin, cout Chapter 8 §iso.27.4
<map> map, multimap §9.5 §iso.23.4.4
<memor y> unique_ptr, shared_ptr, allocator §11.2.1 §iso.20.6
<random> default_random_engine, normal_distribution §12.5 §iso.26.5
<reg ex> regex, smatch §7.3 §iso.28.8
<string> string, basic_string §7.2 §iso.21.3
<set> set, multiset §9.6 §iso.23.4.6
<sstream> istrstream, ostrstream §8.8 §iso.27.8
<stdexcept> length_error, out_of_rang e, runtime_error §3.4.1 §iso.19.2
<thread> thread §13.2 §iso.30.3
<unordered_map> unordered_map, unordered_multimap §9.5 §iso.23.5.4
<utility> move(), swap(), pair Chapter 11 §iso.20.1
<vector> vector §9.2 §iso.23.3.6

This listing is far from complete.
Headers from the C standard library, such as <stdlib.h> are provided. For each such header there

is also a version with its name prefixed by c and the .h removed. This version, such as <cstdlib>

places its declarations in the std namespace.
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6.4 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapter 30 of [Stroustrup,2013].
[2] Don’t reinvent the wheel; use libraries; §6.1.
[3] When you have a choice, prefer the standard library over other libraries; §6.1.
[4] Do not think that the standard library is ideal for everything; §6.1.
[5] Remember to #include the headers for the facilities you use; §6.3.
[6] Remember that standard-library facilities are defined in namespace std; §6.3.
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Strings and Regular Expressions

Prefer the standard to the offbeat.
– Strunk & White

• Introduction
• Strings

string Implementation
• Regular Expressions

Searching; Regular Expression Notation; Iterators
• Advice

7.1 Introduction
Te xt manipulation is a major part of most programs. The C++ standard library offers a sting type to
save most users from C-style manipulation of arrays of characters through pointers. In addition,
regular expression matching is offered to help find patterns in text. The regular expressions are
provided in a form similar to what is common in most modern languages. Both strings and reg ex

objects can use a variety of character types (e.g., Unicode).

7.2 Strings
The standard library provides a string type to complement the string literals (§1.3). The string type
provides a variety of useful string operations, such as concatenation. For example:

string compose(const string& name, const string& domain)
{

return name + '@' + domain;
}

auto addr = compose("dmr","bell−labs.com");
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Here, addr is initialized to the character sequence dmr@bell−labs.com. ‘‘Addition’’ of strings means
concatenation. You can concatenate a string, a string literal, a C-style string, or a character to a
string. The standard string has a move constructor so returning even long strings by value is effi-
cient (§4.6.2).

In many applications, the most common form of concatenation is adding something to the end
of a string. This is directly supported by the += operation. For example:

void m2(string& s1, string& s2)
{

s1 = s1 + '\n'; // append newline
s2 += '\n'; // append newline

}

The two ways of adding to the end of a string are semantically equivalent, but I prefer the latter
because it is more explicit about what it does, more concise, and possibly more efficient.

A string is mutable. In addition to = and +=, subscripting (using [ ]), and substring operations
are supported. Among other useful features, it provides the ability to manipulate substrings. For
example:

string name = "Niels Stroustrup";

void m3()
{

string s = name.substr(6,10); // s = "Stroustr up"
name .replace(0,5,"nicholas"); // name becomes "nicholas Stroustrup"
name[0] = toupper(name[0]); // name becomes "Nicholas Stroustrup"

}

The substr() operation returns a string that is a copy of the substring indicated by its arguments.
The first argument is an index into the string (a position), and the second is the length of the desired
substring. Since indexing starts from 0, s gets the value Stroustrup.

The replace() operation replaces a substring with a value. In this case, the substring starting at 0

with length 5 is Niels; it is replaced by nicholas. Finally, I replace the initial character with its
uppercase equivalent. Thus, the final value of name is Nicholas Stroustrup. Note that the replace-
ment string need not be the same size as the substring that it is replacing.

Naturally, strings can be compared against each other and against string literals. For example:

string incantation;

void respond(const string& answer)
{

if (answer == incantation) {
// perfor m magic

}
else if (answer == "yes") {

// ...
}
// ...

}
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Among the many useful string operations are assignment (using =), subscripting (using [ ] or at() as
for vector; §9.2.2), iteration (using iterators as for vector; §10.2), input (§8.3), streaming (§8.8).

If you need a C-style string (a zero-terminated array of char), string offers read-only access to
its contained characters. For example:

void print(const string& s)
{

printf("For people who like printf: %s\n",s.c_str());
cout << "For people who like streams: " << s << '\n';

}

7.2.1 string Implementation

Implementing a string class is a popular and useful exercise. However, for general-purpose use, our
carefully crafted first attempts rarely match the standard string in convenience or performance.
These days, string is usually implemented using the short-string optimization. That is, short string
values are kept in the string object itself and only longer strings are placed on free store. Consider:

string s1 {"Annemarie"}; // shor t str ing
string s2 {"Annemarie Stroustrup"}; // long string

The memory layout will be something like:

10

Annemarie\0

21

Annemarie Stroustrup\0

s1: s2:

When a string’s value changes from a short to a long string (and vice verse) its representation
adjusts appropriately.

The actual performance of strings can depend critically on the run-time environment. In partic-
ular, in multi-threaded implementations, memory allocation can be relatively costly. Also, when
lots of strings of differing lengths are used, memory fragmentation can result. These are the main
reasons that the short-string optimization has become ubiquitous.

To handle multipe character sets, string is really an alias for a general template basic_string with
the character type char:

template<typename Char>
class basic_string {

// ... string of Char ...
};

using string = basic_string<char>

A user can define strings of arbitrary character types. For example, assuming we have a Japanese
character type Jchar, we can write:

using Jstring = basic_string<Jchar>;
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Now we can do all the usual string operations on Jstring, a string of Japanese characters. Similarly,
we can handle Unicode string.

7.3 Regular Expressions
Regular expressions are a powerful tool for text processing. They provide a way to simply and
tersely describe patterns in text (e.g., a U.S. postal code such as TX 77845, or an ISO-style date,
such as 2009−06−07) and to efficiently find such patterns in text. In <reg ex>, the standard library
provides support for regular expressions in the form of the std::reg ex class and its supporting func-
tions. To giv e a taste of the style of the reg ex library, let us define and print a pattern:

reg ex pat (R"(\w{2}\s∗\d{5}(−\d{4})?)"); // US postal code pattern: XXddddd-dddd and var iants

People who have used regular expressions in just about any language will find \w{2}\s∗\d{5}(−\d{4})?

familiar. It specifies a pattern starting with two letters \w{2} optionally followed by some space \s∗
followed by five digits \d{5} and optionally followed by a dash and four digits −\d{4}. If you are not
familiar with regular expressions, this may be a good time to learn about them ([Stroustrup,2009],
[Maddock,2009], [Friedl,1997]).

To express the pattern, I use a raw string literal starting with R"( and terminated by )". This
allows backslashes and quotes to be used directly in the string. Raw strings are particularly suitable
for regular expressions because they tend to contain a lot of backslashes. Had I used a conventional
string, the pattern definition would have been:

reg ex pat {"\\w{2}\\s∗\\d{5}(−\\d{4})?"}; // U.S. postal code pattern

In <reg ex>, the standard library provides support for regular expressions:
• reg ex_match(): Match a regular expression against a string (of known size) (§7.3.2).
• reg ex_search(): Search for a string that matches a regular expression in an (arbitrarily long)

stream of data (§7.3.1).
• reg ex_replace(): Search for strings that match a regular expression in an (arbitrarily long)

stream of data and replace them.
• reg ex_iterator: Iterate over matches and submatches (§7.3.3).
• reg ex_token_iterator: Iterate over non-matches.

7.3.1 Searching

The simplest way of using a pattern is to search for it in a stream:

int lineno = 0;
for (string line; getline(cin,line); ) { // read into line buffer

++lineno;
smatch matches; // matched strings go here
if (regex_search(line ,matches,pat)) // search for pat in line

cout << lineno << ": " << matches[0] << '\n';
}

The reg ex_search(line ,matches,pat) searches the line for anything that matches the regular expression
stored in pat and if it finds any matches, it stores them in matches. If no match was found,
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reg ex_search(line ,matches,pat) returns false. The matches variable is of type smatch. The ‘‘s’’
stands for ‘‘sub’’ or ‘‘string,’’ and an smatch is a vector of sub-matches of type string. The first ele-
ment, here matches[0], is the complete match. The result of a reg ex_search() is a collection of
matches, typically represented as an smatch:

void use()
{

ifstream in("file.txt"); // input file
if (!in) // check that the file was opened

cerr << "no file\n";

reg ex pat {R"(\w{2}\s∗\d{5}(−\d{4})?)"}; // U.S. postal code pattern

int lineno = 0;
for (string line; getline(in,line); ) {

++lineno;
smatch matches; // matched strings go here
if (regex_search(line , matches, pat)) {

cout << lineno << ": " << matches[0] << '\n'; // the complete match
if (1<matches.siz e() && matches[1].matched)

cout << "\t: " << matches[1] << '\n'; // submatch
}

}
}

This function reads a file looking for U.S. postal codes, such as TX77845 and DC 20500−0001. An
smatch type is a container of regex results. Here, matches[0] is the whole pattern and matches[1] is
the optional four-digit subpattern.

The regular expression syntax and semantics are designed so that regular expressions can be
compiled into state machines for efficient execution [Cox,2007]. The reg ex type performs this
compilation at run time.

7.3.2 Regular Expression Notation

The reg ex library can recognize several variants of the notation for regular expressions. Here, I use
the default notation used, a variant of the ECMA standard used for ECMAScript (more commonly
known as JavaScript).

The syntax of regular expressions is based on characters with special meaning:

Regular Expression Special Characters

. Any single character (a ‘‘wildcard’’) \ Next character has a special meaning
[ Begin character class ∗ Zero or more (suffix operation)
] End character class + One or more (suffix operation)
{ Begin count ? Optional (zero or one) (suffix operation)
} End count | Alternative (or)
( Begin grouping ˆ Start of line; negation
) End grouping $ End of line
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For example, we can specify a line starting with zero or more As followed by one or more Bs fol-
lowed by an optional C like this:

ˆA∗B+C?$

Examples that match:

AAAAAAAAAAAABBBBBBBBBC
BC
B

Examples that do not match:

AAAAA // no B
AAAABC // initial space

AABBCC // too many Cs

A part of a pattern is considered a subpattern (which can be extracted separately from an smatch) if
it is enclosed in parentheses. For example:

\d+−\d+ // no subpatterns
\d+(−\d+) // one subpattern
(\d+)(−\d+) // two subpatter ns

A pattern can be optional or repeated (the default is exactly once) by adding a suffix:

Repetition

{ n } Exactly n times
{ n, }  n or more times
{n,m} At least n and at most m times
∗ Zero or more, that is, {0,}

+ One or more, that is, {1,}

? Optional (zero or one), that is {0,1}

For example:

A{3}B{2,4}C∗

Examples that match:

AAABBC
AAABBB

Example that do not match:

AABBC // too few As
AAABC // too few Bs
AAABBBBBCCC // too many Bs

A suffix ? after any of the repetition notations (?, ∗, ?, and { }) makes the pattern matcher ‘‘lazy’’ or
‘‘non-greedy.’’ That is, when looking for a pattern, it will look for the shortest match rather than
the longest. By default, the pattern matcher always looks for the longest match; this is known as
the Max Munch rule. Consider:
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ababab

The pattern (ab)∗ matches all of ababab. Howev er, (ab)∗? matches only the first ab.
The most common character classifications have names:

Character Classes

alnum Any alphanumeric character
alpha Any alphabetic character
blank Any whitespace character that is not a line separator
cntrl Any control character
d Any decimal digit
digit Any decimal digit
graph Any graphical character
lower Any lowercase character
print Any printable character
punct Any punctuation character
s Any whitespace character
space Any whitespace character
upper Any uppercase character
w Any word character (alphanumeric characters plus the underscore)
xdigit Any hexadecimal digit character

In a regular expression, a character class name must be bracketed by [: :]. For example, [:digit:]

matches a decimal digit. Furthermore, they must be used within a [ ] pair defining a character class.
Several character classes are supported by shorthand notation:

Character Class Abbreviations

\d A decimal digit [[:digit:]]

\s A space (space, tab, etc.) [[:space:]]

\w A letter (a-z) or digit (0-9) or underscore (_) [_[:alnum:]]

\D Not \d [ˆ[:digit:]]

\S Not \s [ˆ[:space:]]

\W Not \w [ˆ_[:alnum:]]

In addition, languages supporting regular expressions often provide:

Nonstandard (but Common) Character Class Abbreviations

\l A lowercase character [[:lower:]]

\u An uppercase character [[:upper:]]

\L Not \l [ˆ[:lower:]]

\U Not \u [ˆ[:upper:]]

For full portability, use the character class names rather than these abbreviations.
As an example, consider writing a pattern that describes C++ identifiers: an underscore or a let-

ter followed by a possibly empty sequence of letters, digits, or underscores. To illustrate the

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

82 Strings and Regular Expressions Chapter 7

subtleties involved, I include a few false attempts:

[:alpha:][:alnum:]∗ // wrong: characters from the set ":alph" followed by ...
[[:alpha:]][[:alnum:]]∗ // wrong: doesn’t accept underscore ('_' is not alpha)
([[:alpha:]]|_)[[:alnum:]]∗ // wrong: underscore is not part of alnum either

([[:alpha:]]|_)([[:alnum:]]|_)∗ // OK, but clumsy
[[:alpha:]_][[:alnum:]_]∗ // OK: include the underscore in the character classes
[_[:alpha:]][_[:alnum:]]∗ // also OK
[_[:alpha:]]\w∗ // \w is equivalent to [_[:alnum:]]

Finally, here is a function that uses the simplest version of reg ex_match() (§7.3.1) to test whether a
string is an identifier:

bool is_identifier(const string& s)
{

reg ex pat {"[_[:alpha:]]\\w∗"}; // underscore or letter
// followed by zero or more underscores, letters, or digits

return regex_match(s,pat);
}

Note the doubling of the backslash to include a backslash in an ordinary string literal. Use raw
string literals to alleviate problems with special characters. For example:

bool is_identifier(const string& s)
{

reg ex pat {R"([_[:alpha:]]\w∗)"};
return regex_match(s,pat);

}

Here are some examples of patterns:

Ax∗ // A, Ax, Axxxx
Ax+ // Ax, Axxx Not A
\d−?\d // 1-2, 12 Not 1--2
\w{2}−\d{4,5} // Ab-1234, XX-54321, 22-5432 Digits are in \w
(\d∗:)?(\d+) // 12:3, 1:23, 123, :123 Not 123:
(bs|BS) // bs, BS Not bS
[aeiouy] // a, o, u  An English vow el, not x
[ˆaeiouy] // x, k Not an English vow el, not e
[aˆeiouy] // a, ˆ, o, u  An English vow el or ˆ

A group (a subpattern) potentially to be represented by a sub_match is delimited by parentheses. If
you need parentheses that should not define a subpattern, use (? rather than plain (. For example:

(\s|:|,)∗(\d∗) // spaces, colons, and/or commas followed by a number

Assuming that we were not interested in the characters before the number (presumably separators),
we could write:

(?\s|:|,)∗(\d∗) // spaces, colons, and/or commas followed by a number

This would save the regular expression engine from having to store the first characters: the (? vari-
ant has only one subpattern.
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Regular Expression Grouping Examples

\d∗\s\w+ No groups (subpatterns)
(\d∗)\s(\w+) Tw o groups
(\d∗)(\s(\w+))+ Tw o groups (groups do not nest)
(\s∗\w∗)+ One group, but one or more subpatterns;

only the last subpattern is saved as a sub_match

<(.∗?)>(.∗?)</\1> Three groups; the \1 means ‘‘same as group 1’’

That last pattern is useful for parsing XML. It finds tag/end-of-tag markers. Note that I used a
non-greedy match (a lazy match), .∗?, for the subpattern between the tag and the end tag. Had I
used plain .∗, this input would have caused a problem:

Always look for the <b>bright</b> side of <b>life</b>.

A greedy match for the first subpattern would match the first < with the last >. A greedy match on
the second subpattern would match the first <b> with the last </b>. Both would be correct behavior,
but unlikely what the programmer wanted.

For a more exhaustive presentation of regular expressions, see [Friedl,1997].

7.3.3 Iterators

We can define a reg ex_iterator for iterating over a stream finding matches for a pattern. For exam-
ple, we can output all whitespace-separated words in a string:

void test()
{

string input = "aa as; asd ++eˆasdf asdfg";
reg ex pat {R"(\s+(\w+))"};
for (sreg ex_iterator p(input.begin(),input.end(),pat); p!=sregex_iterator{}; ++p)

cout << (∗p)[1] << '\n';
}

This outputs:

as
asd
asdfg

Note that we are missing the first word, aa, because it has no preceding whitespace. If we simplify
the pattern to R"((\ew+))", we get

aa
as
asd
e
asdf
asdfg

A reg ex_iterator is a bidirectional iterator, so we cannot directly iterate over an istream. Also, we
cannot write through a reg ex_iterator, and the default reg ex_iterator (reg ex_iterator{}) is the only pos-
sible end-of-sequence.
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7.4 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapters 36-37 of [Stroustrup,2013].
[2] Prefer string operations to C-style string functions; §7.1.
[3] Use string to declare variables and members rather than as a base class; §7.2.
[4] Return strings by value (rely on move semantics); §7.2, §7.2.1.
[5] Directly or indirectly, use substr() to read substrings and replace() to write substrings; §7.2.
[6] A string can grow and shrink, as needed; §7.2.
[7] Use at() rather than iterators or [ ] when you want range checking; §7.2.
[8] Use iterators and [ ] rather than at() when you want to optimize speed; §7.2.
[9] string input doesn’t overflow; §7.2, §8.3.
[10] Use c_str() to produce a C-style string representation of a string (only) when you have to;

§7.2.
[11] Use a string_stream or a generic value extraction function (such as to<X>) for numeric conver-

sion of strings; §8.8.
[12] A basic_string can be used to make strings of characters on any type; §7.2.1.
[13] Use reg ex for most conventional uses of regular expressions; §7.3.
[14] Prefer raw string literals for expressing all but the simplest patterns; §7.3.
[15] Use reg ex_match() to match a complete input; §7.3, §7.3.2.
[16] Use reg ex_search() to search for a pattern in an input stream; §7.3.1.
[17] The regular expression notation can be adjusted to match various standards; §7.3.2.
[18] The default regular expression notation is that of ECMAScript; §7.3.2.
[19] Be restrained; regular expressions can easily become a write-only language; §7.3.2.
[20] Note that \i allows you to express a subpattern in terms of a previous subpattern; §7.3.2.
[21] Use ? to make patterns ‘‘lazy’’; §7.3.2.
[22] Use reg ex_iterators for iterating over a stream looking for a pattern; §7.3.3
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I/O Streams

What you see is all you get.
– Brian W. Kernighan

• Introduction
• Output
• Input
• I/O State
• I/O of User-Defined Types
• Formatting
• File Streams
• String Streams
• Advice

8.1 Introduction
The I/O stream library provides formatted and unformatted buffered I/O of text and numeric values.

An ostream converts typed objects to a stream of characters (bytes):

'c'

123

(123,45)

ostream

stream buffer

‘‘Somewhere’’

Typed values: Byte sequences:

An istream converts a stream of characters (bytes) to typed objects:
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'c'

123

(123,45)

istream

stream buffer

‘‘Somewhere’’

Typed values: Byte sequences:

The operations on istreams and ostreams are described in §8.3 and §8.2. The operations are type-
safe, type-sensitive, and extensible to handle user-defined types.

Other forms of user interaction, such as graphical I/O, are handled through libraries that are not
part of the ISO standard and therefore not described here.

These streams can be used for binary I/O, be used for a variety of character types, be locale spe-
cific, and use advanced buffering strategies, but these topics are beyond the scope of this book.

8.2 Output
In <ostream>, the I/O stream library defines output for every built-in type. Further, it is easy to
define output of a user-defined type (§8.5). The operator << (‘‘put to’’) is used as an output opera-
tor on objects of type ostream; cout is the standard output stream and cerr is the standard stream for
reporting errors. By default, values written to cout are converted to a sequence of characters. For
example, to output the decimal number 10, we can write:

void f()
{

cout << 10;
}

This places the character 1 followed by the character 0 on the standard output stream.
Equivalently, we could write:

void g()
{

int i {10};
cout << i;

}

Output of different types can be combined in the obvious way:

void h(int i)
{

cout << "the value of i is ";
cout << i;
cout << '\n';

}

For h(10), the output will be:
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the value of i is 10

People soon tire of repeating the name of the output stream when outputting several related items.
Fortunately, the result of an output expression can itself be used for further output. For example:

void h2(int i)
{

cout << "the value of i is " << i << '\n';
}

This h2() produces the same output as h().
A character constant is a character enclosed in single quotes. Note that a character is output as

a character rather than as a numerical value. For example:

void k()
{

int b = 'b'; // note: char implicitly converted to int
char c = 'c';
cout << 'a' << b << c;

}

The integer value of the character 'b' is 98 (in the ASCII encoding used on the C++ implementation
that I used), so this will output a98c.

8.3 Input
In <istream>, the standard library offers istreams for input. Like ostreams, istreams deal with char-
acter string representations of built-in types and can easily be extended to cope with user-defined
types.

The operator >> (‘‘get from’’) is used as an input operator; cin is the standard input stream. The
type of the right-hand operand of >> determines what input is accepted and what is the target of the
input operation. For example:

void f()
{

int i;
cin >> i; // read an integer into i

double d;
cin >> d; // read a double-precision floating-point number into d

}

This reads a number, such as 1234, from the standard input into the integer variable i and a floating-
point number, such as 12.34e5, into the double-precision floating-point variable d.

Like output operations, input operations can be chained, so I could equivalently have written:
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void f()
{

int i;
double d;
cin >> i >> d; // read into i and d

}

In both cases, the read of the integer is terminated by any character that is not a digit. By default,
>> skips initial whitespace, so a suitable complete input sequence would be

1234
12.34e5

Often, we want to read a sequence of characters. A convenient way of doing that is to read into a
string. For example:

void hello()
{

cout << "Please enter your name\n";
string str;
cin >> str;
cout << "Hello, " << str << "!\n";

}

If you type in Eric the response is:

Hello, Eric!

By default, a whitespace character, such as a space or a newline, terminates the read, so if you enter
Eric Bloodaxe pretending to be the ill-fated king of York, the response is still:

Hello, Eric!

You can read a whole line (including the terminating newline character) using the getline() function.
For example:

void hello_line()
{

cout << "Please enter your name\n";
string str;
getline(cin,str);
cout << "Hello, " << str << "!\n";

}

With this program, the input Eric Bloodaxe yields the desired output:

Hello, Eric Bloodaxe!

The newline that terminated the line is discarded, so cin is ready for the next input line.
The standard strings have the nice property of expanding to hold what you put in them; you

don’t hav e to precalculate a maximum size. So, if you enter a couple of megabytes of semicolons,
the program will echo pages of semicolons back at you.
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8.4 I/O State
An iostream has a state that we can examine to determine whether an operation succeeded. The
most common use is to read a sequence of values:

vector<int> read_ints(istream& is)
{

vector<int> res;
int i;
while (is>>i)

res.push_back(i);
return res;

}

This reads from is until something that is not an integer is encountered. That something will typi-
cally be the end of input. What is happening here is that the operation is>>i returns a reference to
is, and testing an iostream yields true if the stream is ready for another operation.

In general, the I/O state holds all the information needed to read or write, such as formatting
information (§8.6), error state (e.g., has end-of-input been reached?), and what kind of buffering is
used. In particular, a user can set the state to reflect that an error has occurred (§8.5) and clear the
state if an error wasn’t serious. For example, we could imagine reading a sequence of integers than
might contain some form of nesting:

while (cin) {
for (int i; cin>>i; ) {

// ... use the integer ...
}

if (cin.eof()) {
// .. all is well we reached the end-of-file ...

}
else if (cin.fail()) { // a potentially recoverable error

cin.clear(); // reset the state to good()
char ch;
if (cin>>ch) { // look for nesting represented by { ... }

switch (ch) {
case '{':

// ... start nested structure ...
break;

case '}':
// ... end nested structure ...
break;

default:
cin.setstate(ios_base::failbit); // add fail() to cin’s state

}
}

}
// ...

}
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8.5 I/O of User-Defined Types
In addition to the I/O of built-in types and standard strings, the iostream library allows programmers
to define I/O for their own types. For example, consider a simple type Entr y that we might use to
represent entries in a telephone book:

struct Entry {
string name;
int number;

};

We can define a simple output operator to write an Entr y using a {"name",number} format similar to
the one we use for initialization in code:

ostream& operator<<(ostream& os, const Entry& e)
{

return os << "{\"" << e.name << "\", " << e.number << "}";
}

A user-defined output operator takes its output stream (by reference) as its first argument and
returns it as its result.

The corresponding input operator is more complicated because it has to check for correct for-
matting and deal with errors:

istream& operator>>(istream& is, Entry& e)
// read { "name" , number } pair. Note: for matted with { " " , and }

{
char c, c2;
if (is>>c && c=='{' && is>>c2 && c2=='"') { // star t with a { "

string name; // the default value of a string is the empty string: ""
while (is.get(c) && c!='"') // anything before a " is part of the name

name+=c;

if (is>>c && c==',') {
int number = 0;
if (is>>number>>c && c=='}') { // read the number and a }

e = {name ,number}; // assign to the entry
return is;

}
}

}
is.state_base::failbit); // register the failure in the stream
return is;

}

An input operation returns a reference to its istream which can be used to test if the operation suc-
ceeded. For example, when used as a condition, is>>c means ‘‘Did we succeed at reading from is

into c?’’
The is>>c skips whitespace by default, but is.g et(c) does not, so that this Entr y-input operator

ignores (skips) whitespace outside the name string, but not within it. For example:
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{ "John Marwood Cleese" , 123456 }
{"Michael Edward Palin",987654}

We can read such a pair of values from input into an Entr y like this:

for (Entr y ee; cin>>ee; ) // read from cin into ee
cout << ee << '\n'; // wr ite ee to cout

The output is:

{"John Marwood Cleese", 123456}
{"Michael Edward Palin", 987654}

See §7.3 for a more systematic technique for recognizing patterns in streams of characters (regular
expression matching).

8.6 Formatting
The iostream library provides a large set of operations for controlling the format of input and out-
put. The simplest formatting controls are called manipulators and are found in <ios>, <istream>,
<ostream>, and <iomanip> (for manipulators that take arguments): For example, we can output inte-
gers as decimal (the default), octal, or hexadecimal numbers:

cout << 1234 << ',' << hex << 1234 << ',' << oct << 1234 << '\n'; // pr int 1234,4d2,2322

We can explicitly set the output format for floating-point numbers:

constexpr double d = 123.456;

cout << d << "; " // use the default for mat for d
<< scientific << d << "; "  // use 1.123e2 style for mat for d
<< hexfloat << d << "; "  // use hexadecimal notation for d
<< fixed << d << "; " // use 123.456 style for mat for f
<< defaultfloat << d << '\n'; // use the default for mat for d

This produces:

123.456; 1.234560e+002; 0x1.edd2f2p+6; 123.456000; 123.456

Precision is an integer that determines the number of digits used to display a floating-point number:
• The general format (defaultfloat) lets the implementation choose a format that presents a

value in the style that best preserves the value in the space available. The precision specifies
the maximum number of digits.

• The scientific format (scientific) presents a value with one digit before a decimal point and
an exponent. The precision specifies the maximum number of digits after the decimal point.

• The fixed format (fixed) presents a value as an integer part followed by a decimal point and a
fractional part. The precision specifies the maximum number of digits after the decimal
point.

Floating-point values are rounded rather than just truncated, and precision() doesn’t affect integer
output. For example:
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cout.precision(8);
cout << 1234.56789 << ' ' << 1234.56789 << ' ' << 123456 << '\n';

cout.precision(4);
cout << 1234.56789 << ' ' << 1234.56789 << ' ' << 123456 << '\n';

This produces:

1234.5679 1234.5679 123456
1235 1235 123456

These manipulators as ‘‘sticky’’; that is, it persists for subsequent floating-point operations.

8.7 File Streams
In <fstream>, the standard library provides streams to and from a file:

• ifstreams for reading from a file
• ofstreams for writing to a file
• fstreams for reading from and writing to a file

For example:

ofstream ofs("target"); // ‘‘o’’ for ‘‘output’’
if (!ofs)

error("couldn't open 'target' for writing");

Testing that a file stream has been properly opened is usually done by checking its state.

fstream ifs; // ‘‘i’’ for ‘‘input’’
if (!ifs)

error("couldn't open 'source' for reading");

Assuming that the tests succeeded, ofs can be used as an ordinary ostream (just like cout) and ifs

can be used as an ordinary istream (just like cin).
File positioning and more detailed control of the way a file is opened is possible, but beyond the

scope of this book.

8.8 String Streams
In <sstream>, the standard library provides streams to and from a string:

• istringstreams for reading from a string

• ostringstreams for writing to a string

• stringstreams for reading from and writing to a string.
For example:

void test()
{

ostringstream oss;
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oss << "{temperature," << scientific << 123.4567890 << "}";
cout << oss.str() << '\n';

}

The result from an istringstream can be read using str(). One common use of an ostringstream is to
format before giving the resulting string to a GUI. Similarly, a string received from a GUI can be
read using formatted input operations (§8.3) by putting it into an istringstream.

A stringstream can be used for both reading and writing. For example, we can define an opera-
tion that can convert any type with a string representation to another that also has a string represen-
tation:

template<typename Target =string, typename Source =string>
Targ et to(Source arg) // convert Source to Target
{

stringstream interpreter;
Targ et result;

if (!(interpreter << arg) // wr ite arg into stream
|| !(interpreter >> result) // read result from stream
|| !(interpreter >> std::ws).eof()) // stuff left in stream?
throw runtime_error{"to<>() failed"};

return result;
}

A function template argument needs to be explicitly mentioned only if it cannot be deduced or if
there is no default, so we can write:

auto x1 = to<string,double>(1.2); // very explicit (and verbose)
auto x2 = to<string>(1.2); // Source is deduced to double
auto x3 = to<>(1.2); // Target is defaulted to string; Source is deduced to double
auto x4 = to(1.2); // the <> is redundant;

// Target is defaulted to string; Source is deduced to double

If all function template arguments are defaulted, the <> can be left out.
I consider this a good example of the generality and ease of use that can be achieved by a com-

bination of language features and standard-library facilities.

8.9 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapter 38 of [Stroustrup,2013].
[2] iostreams are type-safe, type-sensitive, and extensible; §8.1.
[3] Define << and >> for user-defined types with values that have meaningful textual representa-

tions; §8.1, §8.2, §8.3.
[4] Use cout for normal output and cerr for errors; §8.1.
[5] There are iostreams for ordinary characters and wide characters, and you can define an

iostream for any kind of character; §8.1.
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[6] Binary I/O is supported; §8.1.
[7] There are standard iostreams for standard I/O streams, files, and strings; §8.2, §8.3, §8.7,

§8.8.
[8] Chain << operations for a terser notation; §8.2.
[9] Chain >> operations for a terser notation; §8.3.
[10] Input into strings does not overflow; §8.3.
[11] By default >> skips initial whitespace; §8.3.
[12] Use the stream state fail to handle potentially recoverable I/O errors; §8.4.
[13] You can define << and >> operators for your own types; §8.5.
[14] You don’t need to modify istream or ostream to add new << and >> operators; §8.5.
[15] Use manipulators to control formatting; §8.6.
[16] precision() specifications apply to all following floating-point output operations; §8.6.
[17] Floating-point format specifications (e.g., scientific) apply to all following floating-point out-

put operations; §8.6.
[18] #include <ios> when using standard manipulators; §8.6.
[19] #include <iomanip> when using standard manipulators taking arguments; §8.6.
[20] Don’t try to copy a file stream.
[21] Remember to check that a file stream is attached to a file before using it; §8.7.
[22] Use stringstreams for in-memory formatting; §8.8.
[23] You can define conversions between any two types that both have string representation; §8.8.

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

9
Containers

It was new.
It was singular.

It was simple.
It must succeed!

– H. Nelson

• Introduction
• vector

Elements; Range Checking
• list

• map

• unordered_map

• Container Overview
• Advice

9.1 Introduction
Most computing involves creating collections of values and then manipulating such collections.
Reading characters into a string and printing out the string is a simple example. A class with the
main purpose of holding objects is commonly called a container. Providing suitable containers for
a giv en task and supporting them with useful fundamental operations are important steps in the
construction of any program.

To illustrate the standard-library containers, consider a simple program for keeping names and
telephone numbers. This is the kind of program for which different approaches appear ‘‘simple and
obvious’’ to people of different backgrounds. The Entr y class from §8.5 can be used to hold a sim-
ple phone book entry. Here, we deliberately ignore many real-world complexities, such as the fact
that many phone numbers do not have a simple representation as a 32-bit int.
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9.2 vector

The most useful standard-library container is vector. A vector is a sequence of elements of a given
type. The elements are stored contiguously in memory. A typical implementation of vector

(§4.2.2, §4.6) will consist of a handle holding pointers to the first element, one-past-the-last ele-
ment, and one-past-the-last allocated space (§10.1) (or the equivalent information represented as a
pointer plus offsets):

elem

space

last

alloc

elements extra space

vector:

In addition, it holds an allocator (here, alloc), from which the vector can acquire memory for its ele-
ments. The default allocator uses new and delete to acquire and release memory.

We can initialize a vector with a set of values of its element type:

vector<Entr y> phone_book = {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

Elements can be accessed through subscripting:

void print_book(const vector<Entry>& book)
{

for (int i = 0; i!=book.size(); ++i)
cout << book[i] << '\n';

}

As usual, indexing starts at 0 so that book[0] holds the entry for David Hume. The vector member
function siz e() gives the number of elements.

The elements of a vector constitute a range, so we can use a range-for loop (§1.8):

void print_book(const vector<Entry>& book)
{

for (const auto& x : book) // for "auto" see §1.5
cout << x << '\n';

}

When we define a vector, we giv e it an initial size (initial number of elements):

vector<int> v1 = {1, 2, 3, 4}; // size is 4
vector<string> v2; // size is 0
vector<Shape∗> v3(23); // size is 23; initial element value: nullptr
vector<double> v4(32,9.9); // size is 32; initial element value: 9.9

An explicit size is enclosed in ordinary parentheses, for example, (23), and by default the elements
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are initialized to the element type’s default value (e.g., nullptr for pointers and 0 for numbers). If
you don’t want the default value, you can specify one as a second argument (e.g., 9.9 for the 32 ele-
ments of v4).

The initial size can be changed. One of the most useful operations on a vector is push_back(),
which adds a new element at the end of a vector, increasing its size by one. For example:

void input()
{

for (Entr y e; cin>>e; )
phone_book.push_back(e);

}

This reads Entr ys from the standard input into phone_book until either the end-of-input (e.g., the
end of a file) is reached or the input operation encounters a format error.

The standard-library vector is implemented so that growing a vector by repeated push_back()s is
efficient. To show how, consider an elaboration of the simple Vector from (Chapter 4 and Chapter
5) using the representation indicated in the diagram above:

template<typename T>
class Vector {

T∗ elem; // pointer to first element
T∗ space; // pointer to first unused (and uninitialized) slot
T∗ last; // pointer to last slot

public:
// ...
int size(); // number of elements (space-elem)
int capacity(); // number of slots available for elements (last-elem)
// ...
void reserve(int newsz); // increase capacity() to newsz
// ...
void push_back(const T& t); // copy t into Vector
void push_back(T&& t); // move t into Vector

};

The standard-libray vector has members capacity(), reser ve(), and push_back(). The reser ve() is used
by users of vector and other vector members to make room for more elements. It may have to allo-
cate new memory and when it does it moves the elements to the new allocation.

Given capacity() and reser ve(), implementing push_back() is trivial:

template<typename T>
void Vector<T>::push_back(const T& t)
{

if (capacity()<size()+1) // make sure we have space for t
reser ve(siz e()==0?8:2∗siz e()); // double the capacity

new(space){t}; // initialize *space to t
++space;

}

Now allocation and relocation of elements happens only infrequently. I used to use reser ve() to try
to improve performance, but that turned out to be a waste of effort: The heuristic used by vector is

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

98 Containers Chapter 9

better than my guesses, so now I only use reser ve() to avoid rellocation of elements when I want to
use pointers to elements.

A vector can be copied in assignments and initializations. For example:

vector<Entr y> book2 = phone_book;

Copying and moving of vectors are implemented by constructors and assignment operators as
described in §4.6. Assigning a vector involves copying its elements. Thus, after the initialization
of book2, book2 and phone_book hold separate copies of every Entr y in the phone book. When a
vector holds many elements, such innocent-looking assignments and initializations can be expen-
sive. Where copying is undesirable, references or pointers (§1.8) or move operations (§4.6.2)
should be used.

The standard-library vector is very flexible and efficient. Use it as your default container; that
is, use it unless you have a solid reason to use some other container. If your reason is ‘‘efficiency,’’
measure. Our intuition is most fallible in matters of the performance of container uses.

9.2.1 Elements

Like all standard-library containers, vector is a container of elements of some type T, that is, a
vector<T>. Just about any type qualifies as an element type: built-in numeric types (such as char,
int, and double), user-defined types (such as string, Entr y, list<int>, and Matrix<double ,2>), and point-
ers (such as const char∗, Shape∗, and double∗). When you insert a new element, its value is copied
into the container. For example, when you put an integer with the value 7 into a container, the
resulting element really has the value 7. The element is not a reference or a pointer to some object
containing 7. This makes for nice, compact containers with fast access. For people who care about
memory sizes and run-time performance this is critical.

If you have a class hierachy (§4.5) that relies on vir tual functions to get polymorphic behavior,
do not store objects directly in a container. Instead store a pointer (or a smart pointer; §11.2.1).
For example:

vector<Shape> vs; // No, don’t - there is no room for a Circle or a Smiley
vector<Shape∗> vps; // better, but see §4.5.4
vector<unique_ptr<Shape>> vups; // OK

9.2.2 Range Checking

The standard-library vector does not guarantee range checking. For example:

void silly(vector<Entr y>& book)
{

int i = book[book.size()].number; // book.size() is out of range
// ...

}

That initialization is likely to place some random value in i rather than giving an error. This is
undesirable, and out-of-range errors are a common problem. Consequently, I often use a simple
range-checking adaptation of vector:
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template<typename T>
class Vec : public std::vector<T> {
public:

using vector<T>::vector; // use the constructors from vector (under the name Vec)

T& operator[](int i) // range check
{ return vector<T>::at(i); }

const T& operator[](int i) const // range check const objects; §4.2.1
{ return vector<T>::at(i); }

};

Vec inherits everything from vector except for the subscript operations that it redefines to do range
checking. The at() operation is a vector subscript operation that throws an exception of type
out_of_rang e if its argument is out of the vector’s range (§3.4.1).

For Vec, an out-of-range access will throw an exception that the user can catch. For example:

void checked(Vec<Entr y>& book)
{

tr y {
book[book.siz e()] = {"Joe",999999}; // will throw an exception
// ...

}
catch (out_of_rang e) {

cout << "range error\n";
}

}

The exception will be thrown, and then caught (§3.4.1). If the user doesn’t catch an exception, the
program will terminate in a well-defined manner rather than proceeding or failing in an undefined
manner. One way to minimize surprises from uncaught exceptions is to use a main() with a tr y-
block as its body. For example:

int main()
tr y {

// your code
}
catch (out_of_rang e) {

cerr << "range error\n";
}
catch (...) {

cerr << "unknown exception thrown\n";
}

This provides default exception handlers so that if we fail to catch some exception, an error mes-
sage is printed on the standard error-diagnostic output stream cerr (§8.2).

Some implementations save you the bother of defining Vec (or equivalent) by providing a range-
checked version of vector (e.g., as a compiler option).
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9.3 list

The standard library offers a doubly-linked list called list:

4

list:

links links links links

We use a list for sequences where we want to insert and delete elements without moving other ele-
ments. Insertion and deletion of phone book entries could be common, so a list could be appropri-
ate for representing a simple phone book. For example:

list<Entr y> phone_book = {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

When we use a linked list, we tend not to access elements using subscripting the way we com-
monly do for vectors. Instead, we might search the list looking for an element with a given value.
To do this, we take advantage of the fact that a list is a sequence as described in Chapter 10:

int get_number(const string& s)
{

for (const auto& x : phone_book)
if (x.name==s)

return x.number;
return 0; // use 0 to represent "number not found"

}

The search for s starts at the beginning of the list and proceeds until s is found or the end of
phone_book is reached.

Sometimes, we need to identify an element in a list. For example, we may want to delete it or
insert a new entry before it. To do that we use an iterator: a list iterator identifies an element of a
list and can be used to iterate through a list (hence its name). Every standard-library container pro-
vides the functions begin() and end(), which return an iterator to the first and to one-past-the-last
element, respectively (Chapter 10). Using iterators explicitly, we can – less elegantly – write the
get_number() function like this:

int get_number(const string& s)
{

for (auto p = phone_book.begin(); p!=phone_book.end(); ++p)
if (p−>name==s)

return p−>number;
return 0; // use 0 to represent "number not found"

}

In fact, this is roughly the way the terser and less error-prone range-for loop is implemented by the
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compiler. Giv en an iterator p, ∗p is the element to which it refers, ++p advances p to refer to the
next element, and when p refers to a class with a member m, then p−>m is equivalent to (∗p).m.

Adding elements to a list and removing elements from a list is easy:

void f(const Entry& ee, list<Entr y>::iterator p, list<Entry>::iterator q)
{

phone_book.inser t(p,ee); // add ee before the element referred to by p
phone_book.erase(q); // remove the element referred to by q

}

For a list, inser t(p,elem) inserts an element with a copy of the value elem before the element pointed
to by p. Similarly, erase(p) removes the element pointed to by p and destroys it. In both cases, p

may be an iterator pointing one-beyond-the-end of the List.
These list examples could be written identically using vector and (surprisingly, unless you

understand machine architecture) perform better with a small vector than with a small list. When
all we want is a sequence of elements, we have a choice between using a vector and a list. Unless
you have a reason not to, use a vector. A vector performs better for traversal (e.g., find() and
count()) and for sorting and searching (e.g., sor t() and binar y_search()).

9.4 map

Writing code to look up a name in a list of (name,number) pairs is quite tedious. In addition, a lin-
ear search is inefficient for all but the shortest lists. The standard library offers a search tree (a red-
black tree) called map:

4

map:

links

key:

value:

links

links

links

In other contexts, a map is known as an associative array or a dictionary. It is implemented as a bal-
anced binary tree.

The standard-library map is a container of pairs of values optimized for lookup. We can use the
same initializer as for vector and list (§9.2, §9.3):

map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};
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When indexed by a value of its first type (called the key), a map returns the corresponding value of
the second type (called the value or the mapped type). For example:

int get_number(const string& s)
{

return phone_book[s];
}

In other words, subscripting a map is essentially the lookup we called get_number(). If a key isn’t
found, it is entered into the map with a default value for its value. The default value for an integer
type is 0; the value I just happened to choose represents an invalid telephone number.

If we wanted to avoid entering invalid numbers into our phone book, we could use find() and
inser t() instead of [ ].

9.5 unordered_map

The cost of a map lookup is O(log(n)) where n is the number of elements in the map. That’s pretty
good. For example, for a map with 1,000,000 elements, we perform only about 20 comparisons
and indirections to find an element. However, in many cases, we can do better by using a hashed
lookup rather than comparison using an ordering function, such as <. The standard-library hashed
containers are referred to as ‘‘unordered’’ because they don’t require an ordering function:

repunordered_map:

hash table:

For example, we can use an unordered_map from <unordered_map> for our phone book:

unordered_map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

As for a map, we can subscript an unordered_map:

int get_number(const string& s)
{

return phone_book[s];
}

The standard-library provides a default hash function for strings as well as for other built-in and
standard-library types. If necessary, you can provide your own. Possibly, the most common need
for a ‘‘custom’’ hash function comes when we want an unordered container of one of our own
types. A hash function is often provided as a function object (§5.5). For example:
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struct Record {
string name;
int product_code;
// ...

};

struct Rhash { // a hash function for Record
siz e_t operator()(const Record& r) const
{

return hash<string>()(r.name) ˆ hash<int>()(r.product_code);
}

};

unordered_set<Record,Rhash> my_set; // set of Recoreds using Rhash for lookup

Creaing a new hash function by combining existing hash functions using exclusive or (ˆ) is simple
and often very effective.

9.6 Container Overview
The standard library provides some of the most general and useful container types to allow the pro-
grammer to select a container that best serves the needs of an application:

Standard Container Summary

vector<T> A variable-size vector (§9.2)
list<T> A doubly-linked list (§9.3)
forward_list<T> A singly-linked list
deque<T> A double-ended queue
set<T> A set (a map with just a key and no value)
multiset<T> A set in which a value can occur many times
map<K,V> An associative array (§9.4)
multimap<K,V> A map in which a key can occur many times
unordered_map<K,V> A map using a hashed lookup (§9.5)
unordered_multimap<K,V> A multimap using a hashed lookup
unordered_set<T> A set using a hashed lookup
unordered_multiset<T> A multiset using a hashed lookup

The unordered containers are optimized for lookup with a key (often a string); in other words, they
are implemented using hash tables.

The containers are defined in namespace std and presented in headers <vector>, <list>, <map>,
etc. (§6.3). In addition, the standard library provides container adaptors queue<T>, stack<T>, and
priority_queue<T>. Look them up if you need them. The standard library also provides more spe-
cialized container-like types, such as a fixed-size array array<T,N> (§11.3.1) and bitset<N> (§11.3.2).

The standard containers and their basic operations are designed to be similar from a notational
point of view. Furthermore, the meanings of the operations are equivalent for the various
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containers. Basic operations apply to every kind of container for which they make sense and can be
efficiently implemented. For example:

• begin() and end() give iterators to the first and one-beyond-the-last elements, respectively.
• push_back() can be used (efficiently) to add elements to the end of a vector, list, and other

containers.
• siz e() returns the number of elements.

This notational and semantic uniformity enables programmers to provide new container types that
can be used in a very similar manner to the standard ones. The range-checked vector, Vector

(§3.4.2, Chapter 4), is an example of that. The uniformity of container interfaces allows us to spec-
ify algorithms independently of individual container types. However, each has strengths and weak-
nesses. For example, subscripting and traversing a vector is cheap and easy. On the other hand,
vector elements are moved when we insert or remove elements; list has exactly the opposite proper-
ties. Please note that a vector is usually more efficient than a list for short sequences of small ele-
ments (even for inser t() and erase()). I recommend the standard-library vector as the default type for
sequences of elements: you need a reason to choose another.

Consider the singly-linked list, forward_list, a container optimized for the empty sequence
(which occupies just one word) because the number of elements are zero or very low; such
sequences are surprisingly useful.

9.7 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapter 31 of [Stroustrup,2013].
[2] An STL container defines a sequence; §9.2.
[3] STL containers are resource handles; §9.2, §9.3, §9.4, §9.5.
[4] Use vector as your default container; §9.2, §9.6.
[5] For simple traversals of a container, use a range-for loop or a begin/end pair of iterators; §9.2,

§9.3.
[6] Use reser ve() to avoid invalidating pointers and iterators to elements; §9.2.
[7] Don’t assume performance benefits from reser ve() without measurement; §9.2.
[8] Use push_back() or resiz e() on a container rather than realloc() on an array; §9.2.
[9] Don’t use iterators into a resized vector; §9.2.
[10] Do not assume that [ ] range checks; §9.2.
[11] Use at() when you need guaranteed range checks; §9.2.
[12] Elements are copied into a container; §9.2.1.
[13] To preserve polymorphic behavior of elements, store pointers; §9.2.1.
[14] Insertion operators, such as inser t() and push_back() are often surprisingly efficient on a

vector; §9.3.
[15] Use forward_list for sequences that are usually empty; §9.6.
[16] When it comes to performance, don’t trust your intuition: measure; §9.2.
[17] A map is usually implemented as a red-black tree; §9.4.
[18] An unordered_map is a hash table; §9.5.
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[19] Pass a container by reference and return a container by value; §9.2.
[20] For a container, use the ()-initializer syntax for sizes and the {}-initializer syntax for lists of

elements; §4.2.3, §9.2.
[21] Prefer compact and contiguous data structures; §9.3.
[22] A list is relatively expensive to traverse; §9.3.
[23] Use unordered containers if you need fast lookup for large amounts of data; §9.5.
[24] Use ordered associative containers (e.g., map and set) if you need to iterate over their ele-

ments in order; §9.4.
[25] Use unordered containers for element types with no natural order (e.g., no reasonable <);

§9.4.
[26] Experiment to check that you have an acceptable hash function; §9.5.
[27] Hash function obtained by combining standard hash functions for elements using exclusive

or are often good; §9.5.
[28] Know your standard-library containers and prefer them to hand-crafted data structures; §9.6.
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Algorithms

Do not multiply entities beyond necessity.
– William Occam

• Introduction
• Use of Iterators
• Iterator Types
• Stream Iterators
• Predicates
• Algorithm Overview
• Container Algorithms
• Advice

10.1 Introduction
A data structure, such as a list or a vector, is not very useful on its own. To use one, we need opera-
tions for basic access such as adding and removing elements (as is provided for list and vector).
Furthermore, we rarely just store objects in a container. We sort them, print them, extract subsets,
remove elements, search for objects, etc. Consequently, the standard library provides the most
common algorithms for containers in addition to providing the most common container types. For
example, the we can simply and efficiently sort a vector of Entr ys and place a copy of each unique
vector element on a list:

void f(vector<Entry>& vec, list<Entry>& lst)
{

sor t(vec.begin(),vec.end()); // use < for order
unique_copy(vec.begin(),vec.end(),lst.begin()); // don’t copy adjacent equal elements

}

For this to work, less than (<) must be defined for Entr ys. For example:
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bool operator<(const Entry& x, const Entry& y) // less than
{

return x.name<y.name; // order Entrys by their names
}

A standard algorithm is expressed in terms of (half-open) sequences of elements. A sequence is
represented by a pair of iterators specifying the first element and the one-beyond-the-last element:

elements:

begin() end()iterators:

In the example, sor t() sorts the sequence defined by the pair of iterators vec.begin() and vec.end() –
which just happens to be all the elements of a vector. For writing (output), you need only to specify
the first element to be written. If more than one element is written, the elements following that ini-
tial element will be overwritten. Thus, to avoid errors, lst must have at least as many elements as
there are unique values in vec.

If we wanted to place the unique elements in a new container, we could have written:

list<Entr y> f(vector<Entr y>& vec)
{

list<Entr y> res;
sor t(vec.begin(),vec.end());
unique_copy(vec.begin(),vec.end(),back_inser ter(res)); // append to res
return res;

}

The call back_inser ter(res) constructs an iterator for res that adds elements at the end of a container,
extending the container to make room for them. This saves us from first having to allocate a fixed
amount of space and then filling it. Thus, the standard containers plus back_inser ter()s eliminate the
need to use error-prone, explicit C-style memory management using realloc(). The standard-library
list has a move constructor (§4.6.2) that makes returning res by value efficient (even for lists of
thousands of elements).

If you find the pair-of-iterators style of code, such as sor t(vec.begin(),vec.end()), tedious, you can
define container versions of the algorithms and write sor t(vec) (§10.7).

10.2 Use of Iterators
When you first encounter a container, a few iterators referring to useful elements can be obtained;
begin() and end() are the best examples of this. In addition, many algorithms return iterators. For
example, the standard algorithm find looks for a value in a sequence and returns an iterator to the
element found:
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bool has_c(const string& s, char c) // does s contain the character c?
{

auto p = find(s.begin(),s.end(),c);
if (p!=s.end())

return true;
else

return false;
}

Like many standard-library search algorithms, find returns end() to indicate ‘‘not found.’’ An equiv-
alent, shorter, definition of has_c() is:

bool has_c(const string& s, char c) // does s contain the character c?
{

return find(s.begin(),s.end(),c)!=s.end();
}

A more interesting exercise would be to find the location of all occurrences of a character in a
string. We can return the set of occurrences as a vector of string iterators. Returning a vector is
efficient because vector provides move semantics (§4.6.1). Assuming that we would like to modify
the locations found, we pass a non-const string:

vector<string::iterator> find_all(string& s, char c) // find all occurrences of c in s
{

vector<string::iterator> res;
for (auto p = s.begin(); p!=s.end(); ++p)

if (∗p==c)
res.push_back(p);

return res;
}

We iterate through the string using a conventional loop, moving the iterator p forward one element
at a time using ++ and looking at the elements using the dereference operator ∗. We could test
find_all() like this:

void test()
{

string m {"Mary had a little lamb"};
for (auto p : find_all(m,'a'))

if (∗p!='a')
cerr << "a bug!\n";

}

That call of find_all() could be graphically represented like this:

M a r y h a d a l i t t l e l a m bm:

find_all(m,'a'):
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Iterators and standard algorithms work equivalently on every standard container for which their use
makes sense. Consequently, we could generalize find_all():

template<typename C, typename V>
vector<typename C::iterator> find_all(C& c, V v) // find all occurrences of v in c
{

vector<typename C::iterator> res;
for (auto p = c.begin(); p!=c.end(); ++p)

if (∗p==v)
res.push_back(p);

return res;
}

The typename is needed to inform the compiler that C’s iterator is supposed to be a type and not a
value of some type, say, the integer 7. We can hide this implementation detail by introducing a type
alias (§5.7) for Iterator:

template<typename T>
using Iterator = typename T::iterator; // T’s iterator

template<typename C, typename V>
vector<Iterator<C>> find_all(C& c, V v) // find all occurrences of v in c
{

vector<Iterator<C>> res;
for (auto p = c.begin(); p!=c.end(); ++p)

if (∗p==v)
res.push_back(p);

return res;
}

We can now write:

void test()
{

string m {"Mary had a little lamb"};

for (auto p : find_all(m,'a')) // p is a str ing::iterator
if (∗p!='a')

cerr << "string bug!\n";

list<double> ld {1.1, 2.2, 3.3, 1.1};
for (auto p : find_all(ld,1.1))

if (∗p!=1.1)
cerr << "list bug!\n";

vector<string> vs { "red", "blue", "green", "green", "orange", "green" };
for (auto p : find_all(vs,"red"))

if (∗p!="red")
cerr << "vector bug!\n";
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for (auto p : find_all(vs,"green"))
∗p = "ver t";

}

Iterators are used to separate algorithms and containers. An algorithm operates on its data through
iterators and knows nothing about the container in which the elements are stored. Conversely, a
container knows nothing about the algorithms operating on its elements; all it does is to supply iter-
ators upon request (e.g., begin() and end()). This model of separation between data storage and
algorithm delivers very general and flexible software.

10.3 Iterator Types
What are iterators really? Any particular iterator is an object of some type. There are, however,
many different iterator types, because an iterator needs to hold the information necessary for doing
its job for a particular container type. These iterator types can be as different as the containers and
the specialized needs they serve. For example, a vector’s iterator could be an ordinary pointer,
because a pointer is quite a reasonable way of referring to an element of a vector:

P i e t H e i nvector:

piterator:

Alternatively, a vector iterator could be implemented as a pointer to the vector plus an index:

P i e t H e i nvector:

(start == p, position == 3)iterator:

Using such an iterator would allow range checking.
A list iterator must be something more complicated than a simple pointer to an element because

an element of a list in general does not know where the next element of that list is. Thus, a list iter-
ator might be a pointer to a link:

link link link link ...list:

piterator:

P i e telements:

What is common for all iterators is their semantics and the naming of their operations. For exam-
ple, applying ++ to any iterator yields an iterator that refers to the next element. Similarly, ∗ yields
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the element to which the iterator refers. In fact, any object that obeys a few simple rules like these
is an iterator – Iterator is a concept (§5.4). Furthermore, users rarely need to know the type of a
specific iterator; each container ‘‘knows’’ its iterator types and makes them available under the con-
ventional names iterator and const_iterator. For example, list<Entr y>::iterator is the general iterator
type for list<Entr y>. We rarely have to worry about the details of how that type is defined.

10.4 Stream Iterators
Iterators are a general and useful concept for dealing with sequences of elements in containers.
However, containers are not the only place where we find sequences of elements. For example, an
input stream produces a sequence of values, and we write a sequence of values to an output stream.
Consequently, the notion of iterators can be usefully applied to input and output.

To make an ostream_iterator, we need to specify which stream will be used and the type of
objects written to it. For example:

ostream_iterator<string> oo {cout}; // wr ite str ings to cout

The effect of assigning to ∗oo is to write the assigned value to cout. For example:

int main()
{

∗oo = "Hello, "; // meaning cout<<"Hello, "
++oo;
∗oo = "world!\n"; // meaning cout<<"wor ld!\n"

}

This is yet another way of writing the canonical message to standard output. The ++oo is done to
mimic writing into an array through a pointer.

Similarly, an istream_iterator is something that allows us to treat an input stream as a read-only
container. Again, we must specify the stream to be used and the type of values expected:

istream_iterator<string> ii {cin};

Input iterators are used in pairs representing a sequence, so we must provide an istream_iterator to
indicate the end of input. This is the default istream_iterator:

istream_iterator<string> eos {};

Typically, istream_iterators and ostream_iterators are not used directly. Instead, they are provided as
arguments to algorithms. For example, we can write a simple program to read a file, sort the words
read, eliminate duplicates, and write the result to another file:

int main()
{

string from, to;
cin >> from >> to; // get source and target file names

ifstream is {from}; // input stream for file "from"
istream_iterator<string> ii {is}; // input iterator for stream
istream_iterator<string> eos {}; // input sentinel
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ofstream os {to}; // output stream for file "to"
ostream_iterator<string> oo {os,"\n"}; // output iterator for stream

vector<string> b {ii,eos}; // b is a vector initialized from input
sor t(b.begin(),b.end()); // sor t the buffer

unique_copy(b.begin(),b.end(),oo); // copy buffer to output, discard replicated values

return !is.eof() || !os; // retur n error state (§1.3, §8.4)
}

An ifstream is an istream that can be attached to a file, and an ofstream is an ostream that can be
attached to a file (§8.7). The ostream_iterator’s second argument is used to delimit output values.

Actually, this program is longer than it needs to be. We read the strings into a vector, then we
sor t() them, and then we write them out, eliminating duplicates. A more elegant solution is not to
store duplicates at all. This can be done by keeping the strings in a set, which does not keep dupli-
cates and keeps its elements in order (§9.4). That way, we could replace the two lines using a
vector with one using a set and replace unique_copy() with the simpler copy():

set<string> b {ii,eos}; // collect strings from input
copy(b.begin(),b.end(),oo); // copy buffer to output

We used the names ii, eos, and oo only once, so we could further reduce the size of the program:

int main()
{

string from, to;
cin >> from >> to; // get source and target file names

ifstream is {from}; // input stream for file "from"
ofstream os {to}; // output stream for file "to"

set<string> b {istream_iterator<string>{is},istream_iterator<string>{}}; // read input
copy(b.begin(),b.end(),ostream_iterator<string>{os,"\n"}); // copy to output

return !is.eof() || !os; // retur n error state (§1.3, §8.4)
}

It is a matter of taste and experience whether or not this last simplification improves readability.

10.5 Predicates
In the examples above, the algorithms have simply ‘‘built in’’ the action to be done for each ele-
ment of a sequence. However, we often want to make that action a parameter to the algorithm. For
example, the find algorithm (§10.2, §10.6) provides a convenient way of looking for a specific
value. A more general variant looks for an element that fulfills a specified requirement, a predicate.
For example, we might want to search a map for the first value larger than 42. A map allows us to
access its elements as a sequence of (key,value) pairs, so we can search a map<string,int>’s sequence
for a pair<const string,int> where the int is greater than 42:
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void f(map<string,int>& m)
{

auto p = find_if(m.begin(),m.end(),Greater_than{42});
// ...

}

Here, Greater_than is a function object (§5.5) holding the value (42) to be compared against:

struct Greater_than {
int val;
Greater_than(int v) : val{v} { }
bool operator()(const pair<string,int>& r) { return r.second>val; }

};

Alternatively, we could use a lambda expression (§5.5):

auto p = find_if(m.begin(), m.end(), [](const pair<string,int>& r) { return r.second>42; });

A predicate should not modify the elements to which it is applied.

10.6 Algorithm Overview
A general definition of an algorithm is ‘‘a finite set of rules which gives a sequence of operations
for solving a specific set of problems [and] has five important features: Finiteness ... Definiteness ...
Input ... Output ... Effectiveness’’ [Knuth,1968,§1.1]. In the context of the C++ standard library, an
algorithm is a function template operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namespace
std and presented in the <algorithm> header. These standard-library algorithms all take sequences
as inputs. A half-open sequence from b to e is referred to as [b:e). Here are a few examples:

Selected Standard Algorithms

p=find(b,e ,x) p is the first p in [b:e) so that ∗p==x

p=find_if(b,e ,f) p is the first p in [b:e) so that f(∗p)==true

n=count(b,e ,x) n is the number of elements ∗q in [b:e) so that ∗q==x

n=count_if(b,e ,f) n is the number of elements ∗q in [b:e) so that f(∗q,x)

replace(b,e ,v,v2) Replace elements ∗q in [b:e) so that ∗q==v by v2

replace_if(b,e ,f,v2) Replace elements ∗q in [b:e) so that f(∗q) by v2

p=copy(b,e ,out) Copy [b:e) to [out:p)
p=copy_if(b,e ,out,f) Copy elements ∗q from [b:e) so that f(∗q) to [out:p)
p=move(b,e ,out) Move [b:e) to [out:p)
p=unique_copy(b,e ,out) Copy [b:e) to [out:p); don’t copy adjacent duplicates
sor t(b,e) Sort elements of [b:e) using < as the sorting criterion
sor t(b,e,f) Sort elements of [b:e) using f as the sorting criterion
(p1,p2)=equal_rang e(b,e ,v) [p1:p2) is the subsequence of the sorted sequence [b:e)

with the value v; basically a binary search for v

p=merge(b,e ,b2,e2,out) Merge two sorted sequences [b:e) and [b2:e2) into [out:p)
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These algorithms, and many more (e.g., §12.3), can be applied to elements of containers, strings,
and built-in arrays.

Some algorithms, such as replace() and sor t(), modify element values, but no algorithm add or
subtract elements of a container. The reason is that a sequence does not identify the container that
holds the elements of the sequence. If you want to add elements, you need something, such as an
back_inser ter that knows about the container (§10.1), or directly refer to the container itself, such as
push_back() or erase() (§9.2).

The standard-library algorithms tend to be more carefully designed, specified, and implemented
than the average hand-crafted loop, so know them and use them in preference to code written in the
bare language.

10.7 Container Algorithms
A sequence is defined by a pair of iterators [begin:end). This is general and flexible, but most often,
we apply an algorithm to a sequence that is the contents of a container. For example:

sor t(v.begin(),v.end());

Why don’t we just say sor t(v)? We can easily provide that shorthand:

namespace Estd {
using namespace std;

template<typename C>
void sort(C& c)
{

sor t(c.begin(),c.end());
}

template<typename C, typename Pred>
void sort(C& c, Pred p)
{

sor t(c.begin(),c.end(),p);
}

// ...
}

I put the container versions of sor t() (and other algorithms) into their own namespace Estd

(‘‘extended std’’) to avoid interfering with other programmers’ uses of namespace std.

10.8 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapter 32 of [Stroustrup,2013].
[2] An STL algorithm operates on one or more sequences; §10.1.
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[3] An input sequence is half-open and defined by a pair of iterators; §10.1.
[4] When searching, an algorithm usually returns the end of the input sequence to indicate ‘‘not

found’’; §10.2.
[5] Algorithms do not directly add or subtract elements from their argument sequences; §10.2,

§10.6.
[6] When writing a loop, consider whether it could be expressed as a general algorithm; §10.2.
[7] Use predicates and other function objects to give standard algorithms a wider range of mean-

ings; §10.5, §10.6.
[8] A predicate must not modify its argument; §10.5.
[9] Know your standard-library algorithms and prefer them to hand-crafted loops; §10.6.
[10] When the pair-of-iterators style becomes tedious, introduce a container/range algorithm;

§10.7.
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The time you enjoy wasting is not wasted time.
– Bertrand Russell

• Introduction
• Resource Management

unique_ptr and shared_ptr

• Specialized Containers
array; bitset; pair and tuple

• Time
• Function Adaptors

bind(); mem_fn(); function

• Type Functions
iterator_traits; Type Predicates

• Advice

11.1 Introduction
Not all standard-library components come as part of obviously labeled facilities, such as ‘‘contain-
ers’’ or ‘‘I/O.’’ This section gives a few examples of small, widely useful components. The point
here is that a function or a type need not be complicated or closely tied to a mass of other functions
and types to be useful. Such library components mostly act as building blocks for more powerful
library facilities, including other components of the standard library.

11.2 Resource Management
One of the key tasks of any nontrivial program is to manage resources. A resource is something
that must be acquired and later (explicitly or implicitly) released. Examples are memory, locks,
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sockets, thread handles, and file handles. For a long-running program, failing to release a resource
in a timely manner (‘‘a leak’’) can cause serious performance degradation and possibly even a mis-
erable crash. Even for short programs, a leak can become an embarrassment, say by a resource
shortage increasing the run time by orders of magnitude.

The standard library components are designed not to leak resources. To do this, they rely on the
basic language support for resource management using constructor/destructor pairs to ensure that a
resource doesn’t outlive an object responsible for it. The use of a constructor/destructor pair in
Vector to manage the lifetime of its elements is an example (§4.2.2) and all standard-library con-
tainers are implemented in similar ways. Importantly, this approach interacts correctly with error
handling using exceptions. For example, the technique is used for the standard-library lock classes:

mutex m; // used to protect access to shared data
// ...
void f()
{

unique_lock<mutex> lck {m}; // acquire the mutex m
// ... manipulate shared data ...

}

A thread will not proceed until lck’s constructor has acquired its mutex, m (§13.5). The correspond-
ing destructor releases the resource. So, in this example, unique_lock’s destructor releases the
mutex when the thread of control leaves f() (through a return, by ‘‘falling off the end of the func-
tion,’’ or through an exception throw).

This is an application of the ‘‘Resource Acquisition Is Initialization’’ technique (RAII; §4.2.2).
RAII is fundamental to the idiomatic handling of resources in C++. Containers (such as vector and
map), string, and iostream manage their resources (such as file handles and buffers) similarly.

11.2.1 unique_ptr and shared_ptr

The examples so far take care of objects defined in a scope, releasing the resources they acquire at
the exit from the scope, but what about objects allocated on the free store? In <memor y>, the stan-
dard library provides two ‘‘smart pointers’’ to help manage objects on the free store:

[1] unique_ptr to represent unique ownership
[2] shared_ptr to represent shared ownership

The most basic use of these ‘‘smart pointers’’ is to prevent memory leaks caused by careless pro-
gramming. For example:

void f(int i, int j) // X* vs. unique_ptr<X>
{

X∗ p = new X; // allocate a new X
unique_ptr<X> sp {new X}; // allocate a new X and give its pointer to unique_ptr
// ...
if (i<99) throw Z{}; // may throw an exception
if (j<77) return; // may retur n "ear ly"
// ...
p−>do_something(); // may throw an exception
sp−>do_something(); // may throw an exception
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// ...
delete p; // destroy *p

}

Here, we ‘‘forgot’’ to delete p if i<99 or if j<77. On the other hand, unique_ptr ensures that its object
is properly destroyed whichever way we exit f() (by throwing an exception, by executing return, or
by ‘‘falling off the end’’). Ironically, we could have solved the problem simply by not using a
pointer and not using new:

void f(int i, int j) // use a local var iable
{

X x;
// ...

}

Unfortunately, overuse of new (and of pointers and references) seems to be an increasing problem.
However, when you really need the semantics of pointers, unique_ptr is a very lightweight

mechanism with no space or time overhead compared to correct use of a built-in pointer. Its further
uses include passing free-store allocated objects in and out of functions:

unique_ptr<X> make_X(int i)
// make an X and immediately give it to a unique_ptr

{
// ... check i, etc. ...
return unique_ptr<X>{new X{i}};

}

A unique_ptr is a handle to an individual object (or an array) in much the same way that a vector is
a handle to a sequence of objects. Both control the lifetime of other objects (using RAII) and both
rely on move semantics to make return simple and efficient.

The shared_ptr is similar to unique_ptr except that shared_ptrs are copied rather than moved.
The shared_ptrs for an object share ownership of an object and that object is destroyed when the
last of its shared_ptrs is destroyed. For example:

void f(shared_ptr<fstream>);
void g(shared_ptr<fstream>);

void user(const string& name, ios_base::openmode mode)
{

shared_ptr<fstream> fp {new fstream(name ,mode)};
if (!∗fp) // make sure the file was properly opened

throw No_file{};

f(fp);
g(fp);
// ...

}

Now, the file opened by fp’s constructor will be closed by the last function to (explicitly or implic-
itly) destroy a copy of fp. Note that f() or g() may spawn a task holding a copy of fp or in some
other way store a copy that outlives user(). Thus, shared_ptr provides a form of garbage collection
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that respects the destructor-based resource management of the memory-managed objects. This is
neither cost free nor exorbitantly expensive, but it does make the lifetime of the shared object hard
to predict. Use shared_ptr only if you actually need shared ownership.

Creating an object on the free store and then passing a pointer to it to a smart pointer is logi-
cally a bit odd and can be verbose. To compensate, the standard library (in <memor y>) provides a
function make_shared(). For example:

struct S {
int i;
string s;
double d;
// ...

};

shared_ptr<S> p1 {new S {1,"Ankh Morpork",4.65}};

auto p2 = make_shared<S>(2,"Oz",7.62);

Now, p2 is a shared_ptr<S> pointing to an object of type S allocated on the free store, containing
{1,string{"Ankh Morpork"},4.65}.

Currently, there is no standard-library make_unique() similar to make_shared() and make_pair()

(§11.3.3). However, it is easily defined:

template<typename T, typename ... Args>
unique_ptr<T> make_unique(Args&&... args)
{

return std::unique_ptr<T>{new T{std::forward<Args>(args)...}};
}

No, I don’t claim that this definition is trivial to understand, but it is efficient and quite general.
The elipses, ..., indicate the use of a variadic template (§5.6). We can now write:

auto p2 = make_unique<S>(3,"Atlantis",11.3);

Given unique_ptr and shared_ptr, we can implement a complete ‘‘no naked new’’ policy (§4.2.2)
for many programs. However, these ‘‘smart pointers’’ are still conceptually pointers and therefore
only my second choice for resource management – after containers and other types that manage
their resources at a higher conceptual level. In particular, shared_ptrs do not in themselves provide
any rules for which of their owners can read and/or write the shared object. Data races (§13.7) and
other forms of confusion are not addressed simply by eliminating the resource management issues.

Where do we use ‘‘smart pointers’’ (such as unique_ptr) rather than resource handles with oper-
ations designed specifically for the resource (such as vector or thread)? Unsurprisingly, the answer
is ‘‘when we need pointer semantics.’’

• When we share an object, we need pointers (or references) to refer to the shared object, so a
shared_ptr becomes the obvious choice (unless there is an obvious single owner).

• When we refer to a polymorphic object, we need a pointer (or a reference) because we don’t
know the exact type of the object referred to (or even its size), so a unique_ptr becomes the
obvious choice.
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• A shared polymorphic object typically requires shared_ptrs.
We do not need to use a pointer to return a collection of objects from a function; a container that is
a resource handle will do that simply and efficiently (§4.6.2).

11.3 Specialized Containers
The standard library provides several containers that don’t fit perfectly into the STL framework
(Chapter 9, Chapter 10). Examples are built-in arrays, array, and string. I sometimes refer to those
as ‘‘almost containers,’’ but that is not quite fair: they hold elements, so they are containers, but
each has restrictions or added facilities that make them awkward in the context of the STL.
Describing them separately also simplifies the description of the STL.

‘‘ Almost Containers’’

T[N] Built-in array: a fixed-size continuously allocated sequence of N

elements of type T; implicitly converts to a T∗
array<T,N> A fixed-size continuously allocated sequence of N elements

of type T; like the built-in array, but with most problems solved
bitset<N> A fixed-size sequence of N bits
vector<bool> A sequence of bits compactly stored in a specialization of vector

pair<T,U> Tw o elements of types T and U

tuple<T...> A sequence of an arbitrary number of elements of arbitrary types
basic_string<C> A sequence of characters of type C; provides string operations
valarray<T> An array of numeric values of type T; provides numeric operations

Why does the standard library provide so many containers? They serve common but different
(often overlapping) needs. If the standard library didn’t provide them, many people would have to
design and implement their own. For example:

• pair and tuple are heterogeneous; all other containers are homogeneous (all elements are of
the same type).

• array, vector, and tuple elements are contiguously allocated; forward_list and map are linked
structures.

• bitset and vector<bool> hold bits and access them through proxy objects; all other standard-
library containers can hold a variety of types and access elements directly.

• basic_string requires its elements to be some form of character and to provide string manip-
ulation, such as concatenation and locale-sensitive operations

• valarray requires its elements to be numbers and to provide numerical operations.
All of these containers can be seen as providing specialized services needed by large communities
of programmers. No single container could serve all of these needs because some needs are contra-
dictory, for example, ‘‘ability to grow’’ vs. ‘‘guaranteed to be allocated in a fixed location,’’ and
‘‘elements do not move when elements are added’’ vs. ‘‘contiguously allocated.’’ Furthermore, a
very general container would imply overhead deemed unacceptable for individual containers.
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11.3.1 array

An array, defined in <array>, is a fixed-size sequence of elements of a given type where the number
of elements is specified at compile time. Thus, an array can be allocated with its elements on the
stack, in an object, or in static storage. The elements are allocated in the scope where the array is
defined. An array is best understood as a built-in array with its size firmly attached, without
implicit, potentially surprising conversions to pointer types, and with a few convenience functions
provided. There is no overhead (time or space) involved in using an array compared to using a
built-in array. An array does not follow the ‘‘handle to elements’’ model of STL containers.
Instead, an array directly contains its elements.

An array can be initialized by an initializer list:

array<int,3> a1 = {1,2,3};

The number of elements in the initializer must be equal to or less than the number of elements
specified for the array.

The element count is not optional:

array<int> ax = {1,2,3}; // error size not specified

The element count must be a constant expression:

void f(int n)
{

array<string,n> aa = {"John's", "Queens' "}; // error : size not a constant expression
//

}

If you need the element count to be a variable, use vector.
When necessary, an array can be explicitly passed to a C-style function that expects a pointer.

For example:

void f(int∗ p, int sz); // C-style interface

void g()
{

array<int,10> a;

f(a,a.siz e()); // error : no conversion
f(&a[0],a.siz e()); // C-style use
f(a.data(),a.siz e()); // C-style use

auto p = find(a.begin(),a.end(),777); // C++/STL-style use
// ...

}

Why would we use an array when vector is so much more flexible? Because an array is less flexi-
ble, it is simpler. Occasionally, there is a significant performance advantage to be had by directly
accessing elements allocated on the stack rather than allocating elements on the free store, access-
ing them indirectly through the vector (a handle), and then deallocating them. On the other hand,
the stack is a limited resource (especially on some embedded systems), and stack overflow is nasty.
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Why would we use an array when we could use a built-in array? An array knows its size, so it is
easy to use with standard-library algorithms, and it can be copied (using = or initialization). How-
ev er, my main reason to prefer array is that it saves me from surprising nasty conversions to point-
ers. Consider:

void h()
{

Circle a1[10];
array<Circle,10> a2;
// ...
Shape∗ p1 = a1; // OK: disaster waiting to happen
Shape∗ p2 = a2; // error : no conversion of array<Circle,10> to Shape*
p1[3].draw(); // disaster

}

The ‘‘disaster’’ comment assumes that siz eof(Shape)<siz eof(Circle), so that subscripting a Circle[]

through a Shape∗ gives a  wrong offset. All standard containers provide this advantage over built-in
arrays.

11.3.2 bitset

Aspects of a system, such as the state of an input stream, are often represented as a set of flags indi-
cating binary conditions such as good/bad, true/false, and on/off. C++ supports the notion of small
sets of flags efficiently through bitwise operations on integers (§1.5). Class bitset<N> generalizes
this notion and offers greater convenience by providing operations on a sequence of N bits [0:N),
where N is known at compile time. For sets of bits that don’t fit into a long long int, using a bitset is
much more convenient than using integers directly. For smaller sets, bitset is usually optimized. If
you want to name the bits, rather than numbering them, you can use a set (§9.4) or an enumeration
(§2.5).

A bitset can be initialized with an integer or a string:

bitset<9> bs1 {"110001111"};
bitset<9> bs2 {399};

The usual bitwise operations (§1.5) can be applied, as can left- and right-shift operations (<< and
>>):

bitset<9> bs3 = ˜bs1; // complement: bs3=="001110000"
bitset<9> bs4 = bs1&bs3; // all zeros
bitset<9> bs5 = bs1<<2; // shift left: bs5 = "111000000"

The shift operators (here, <<) ‘‘shifts in’’ zeros.
The operations to_ullong() and to_string() provide the inverse operations to the constructors. For

example, we could write out the binary representation of an int:

void binary(int i)
{

bitset<8∗siz eof(int)> b = i; // assume 8-bit byte (see also §12.7)
cout << b.to_string() << '\n'; // wr ite out the bits of i

}
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This prints the bits represented as 1s and 0s from left to right, with the most significant bit leftmost,
so that argument 123 would give the output

00000000000000000000000001111011

For this example, it is simpler to directly use the bitset output operator:

void binary2(int i)
{

bitset<8∗siz eof(int)> b = i; // assume 8-bit byte (see also §12.7)
cout << b << '\n'; // wr ite out the bits of i

}

11.3.3 pair and tuple

Often, we need some data that is just data; that is, a collection of values, rather than an object of a
class with a well-defined semantics and an invariant for its value (§3.4.2). In such cases, we could
define a simple struct with an appropriate set of appropriately named members. Alternatively, we
could let the standard library write the definition for us. For example, the standard-library algo-
rithm equal_rang e returns a pair of iterators specifying a subsequence meeting a predicate:

template<typename Forward_iterator, typename T, typename Compare>
pair<Forward_iterator,Forward_iterator>
equal_rang e(Forward_iterator first, Forward_iterator last, const T& val, Compare cmp);

Given a sorted sequence [first:last), equal_rang e() will return the pair representing the subsequence
that matches the predicate cmp. We can use that to search in a sorted sequence of Records:

auto rec_eq = [](const Record& r1, const Record& r2) { return r1.name<r2.name;}; // compare names

void f(const vector<Record>& v) // assume that v is sorted on its "name" field
{

auto er = equal_range(v.begin(),v.end(),Record{"Reg"},rec_eq);

for (auto p = er.first; p!=er.second; ++p) // pr int all equal records
cout << ∗p; // assume that << is defined for Record

}

The first member of a pair is called first and the second member is called second. This naming is
not particularly creative and may look a bit odd at first, but such consistent naming is a boon when
we want to write generic code.

The standard-library pair (from <utility>) is quite frequently used in the standard library and
elsewhere. A pair provides operators, such as =, ==, and <, if its elements do. The make_pair() func-
tion makes it easy to create a pair without explicitly mentioning its type. For example:

void f(vector<string>& v)
{

auto pp = make_pair(v.begin(),2); // pp is a pair<vector<str ing>::iterator,int>
// ...

}
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If you need more than two elements (or less), you can use tuple (from <utility>). A tuple is a hetero-
geneous sequence of elements; for example:

tuple<string,int,double> t2{"Sild",123, 3.14}; // the type is explicitly specified

auto t = make_tuple(string{"Herring"},10, 1.23); // the type is deduced to tuple<string,int,double>

string s = get<0>(t); // get first element of tuple: "Herring"
int x = get<1>(t); // 10
double d = get<2>(t); // 1.23

The elements of a tuple are numbered (starting with zero), rather than named the way elements of
pairs are (first and second). To get compile-time selection of elements, I must unfortunately use the
ugly get<1>(t), rather than get(t,1) or t[1].

Like pairs, tuples can be assigned and compared if their elements can be.
A pair is common in interfaces because often we want to return more than one value, such as a

result and an indicator of the quality of that result. It is less common to need three or more parts to
a result, so tuples are more often found in the implementations of generic algorithms.

11.4 Time
The standard library provides facilities for dealing with time. For example, here is the basic way of
timing something:

using namespace std::chrono; // see §3.3

auto t0 = high_resolution_clock::now();
do_work();
auto t1 = high_resolution_clock::now();
cout << duration_cast<milliseconds>(t1−t0).count() << "msec\n";

The clock returns a time_point (a point in time). Subtracting two time_points giv es a duration (a
period of time). Various clocks give their results in various units of time (the clock I used measures
nanoseconds), so it is usually a good idea to convert a duration into a known unit. That’s what dura-

tion_cast does.
The standard-library facilities for dealing with time are found in the subnamespace std::chrono

in <chrono>.
Don’t make statements about ‘‘efficiency’’ of code without first doing time measurements.

Guesses about performance are most unreliable.

11.5 Function Adaptors
A function adaptor takes a function as argument and returns a function object that can be used to
invoke the original function. The standard library provides bind() and mem_fn() adaptors to do argu-
ment binding, also called Currying or partial evaluation. Binders were heavily used in the past, but
most uses seem to be more easily expressed using lambdas (§5.5).
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11.5.1 bind()

Given a function and a set of arguments, bind() produces a function object that can be called with
‘‘the remaining’’ arguments, if any, of the function. For example:

double cube(double);

auto cube2 = bind(cube,2);

A call cube2() will invoke cube with the argument 2, that is, cube(2). We don’t hav e to bind every
argument of a function. For example:

using namespace placeholders;

void f(int,const string&);
auto g = bind(f,2,_1); // bind f()’s first argument to 2
f(2,"hello");
g("hello"); // also calls f(2,"hello");

The curious _1 argument to the binder is a placeholder telling bind() where arguments to the result-
ing function object should go. In this case, g()’s (first) argument is used as f()’s second argument.

The placeholders are found in the (sub)namespace std::placeholders that is part of <functional>.
To bind arguments for an overloaded function, we have to explicitly state which version of the

function we want to bind:

int pow(int,int);
double pow(double ,double); // pow() is overloaded

auto pow2 = bind(pow,_1,2); // error : which pow()?
auto pow2 = bind((double(∗)(double ,double))pow,_1,2); // OK (but ugly)

I assigned the result of bind() to a variable declared using auto. This saves me the bother of specify-
ing the return type of a call of bind(). That can be useful because the return type of bind() varies
with the type of function to be called and the argument values stored. In particular, the returned
function object is larger when it has to hold values of bound parameters. When we want to be spe-
cific about the types of the arguments required and the type of result returned, we can use a function

(§11.5.3).

11.5.2 mem_fn()

The function adaptor mem_fn(mf) produces a function object that can be called as a nonmember
function. For example:

void user(Shape∗ p)
{

p−>draw();
auto draw = mem_fn(&Shape::draw);
draw(p);

}

The major use of mem_fn() is when an algorithm requires an operation to be called as a nonmember
function. For example:
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void draw_all(vector<Shape∗>& v)
{

for_each(v.begin(),v.end(),mem_fn(&Shape::draw));
}

Thus, mem_fn() can be seen as a mapping from the object-oriented calling style to the functional
one.

Often, lambdas provide a simple and general alternative to binders. For example:

void draw_all(vector<Shape∗>& v)
{

for_each(v.begin(),v.end(),[](Shape∗ p) { p−>draw(); });
}

11.5.3 function

A bind() can be used directly, and it can be used to initialize an auto variable. In that, bind() resem-
bles a lambda.

If we want to assign the result of bind() to a variable with a specific type, we can use the stan-
dard-library type function. A function is specified with a specific return type and a specific argu-
ment type. For example:

int f1(double);
function<int(double)> fct {f1}; // initialize to f1
int f2(int);

void user()
{

fct = [](double d) { return round(d); }; // assign lambda to fct
fct = f1; // assign function to fct
fct = f2; // error : incorrect argument type

}

The standard-library function is a type that can hold any object you can invoke using the call opera-
tor (). That is, an object of type function is a function object (§5.5). For example:

int round(double x) { return static_cast<int>(floor(x+0.5)); } // conventional 4/5 rounding

function<int(double)> f; // f can hold anything that can be called with a double and return an int

enum class Round_style { truncate, round };

struct Round { // function object carrying a state
Round_style s;
Round(Round_style ss) :s(ss) { }
int operator()(double x) const { return static_cast<int>((s==Round_style::round) ? (x+0.5) : x); };

};

I use static_cast (§14.2.3) to make it explicit that I want to return an int.
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void t1()
{

f = round;
cout << f(7.6) << '\n'; // call through f to the function round

f = Round(Round_style::truncate);
cout << f(7.6) << '\n'; // call the function object

Round_style style = Round_style::round;
f = [style] (double x){ return static_cast<int>((style==Round_style::round) ? x+0.5 : x); };

cout << f(7.6) << '\n'; // call the lambda

vector<double> v {7.6};
f = Round(Round_style::round);
std::transform(v.begin(),v.end(),v.begin(),f); // pass to algorithm

cout << v[0] << '\n'; // transfor med by the lambda
}

We get 8, 7, 8, and 8.
Obviously, functions are useful for callbacks, for passing operations as arguments, etc.

11.6 Type Functions
A type function is a function that is evaluated at compile-time given a type as its argument or
returning a type. The standard library provides a variety of type functions to help library imple-
menters and programmers in general to write code that take advantage of aspects of the language,
the standard library, and code in general.

For numerical types, numeric_limits from <limits> presents a variety of useful information
(§12.7). For example:

constexpr float min = numeric_limits<float>::min(); // smallest positive float

Similarly, object sizes can be found by the built-in siz eof operator (§1.5). For example:

constexpr int szi = sizeof(int); // the number of bytes in an int

Such type functions are part of C++’s mechanisms for compile-time computation that allow tighter
type checking and better performance than would otherwise have been possible. Use of such fea-
tures is often called metaprogramming or (when templates are involved) template metaprogram-
ming. Here, I just present two facilities provided by the standard library: iterator_traits (§11.6.1)
and type predicates (§11.6.2).

11.6.1 iterator_traits

The standard-library sor t() takes a pair of iterators supposed to define a sequence (Chapter 10).
Furthermore, those iterators must offer random access to that sequence, that is, they must be
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random-access iterators. Some containers, such as forward_list, do not offer that. In particular, a
forward_list is a singly-linked list so subscripting would be expensive and there is no reasonable
way to refer back to a previous element. However, like most containers, forward_list offers forward
iterators that can be used to traverse the sequence by algorithms and for-statements (§5.2).

The standard library provides a mechanism, iterator_traits that allows us to check which kind of
iterator is supported. Given that, we can improve the range sor t() from §10.7 to accept either a
vector or a forward_list. For example:

void test(vector<string>& v, forward_list<int>& lst)
{

sor t(v); // sor t the vector
sor t(lst); // sor t the singly-linked list

}

The techniques needed to make that work are generally useful.
First, I write two helper functions that take an extra argument indicating whether they are to be

used for random-access iterators or forward iterators. The version taking random-access iterator
arguments is trivial:

template<typename Ran> // for random-access iterators
void sort_helper(Ran beg, Ran end, random_access_iterator_tag) // we can subscript into [beg:end)
{

sor t(beg,end); // just sort it
}

The version for forward iterators simply copies the list into a vector, sorts, and copies back:

template<typename For> // for forward iterators
void sort_helper(For beg, For end, forward_iterator_tag) // we can traverse [beg:end)
{

vector<Value_type<For>> v {beg,end}; // initialize a vector from [beg:end)
sor t(v.begin(),v.end());
copy(v.begin(),v.end(),beg); // copy the elements back

}

Value_type<For>> is the type of For’s elements, called it’s value type. Every standard-library iterator
has a member value_type. I get the Value_type<For>> notation by defining a type alias (§5.7):

template<typename C>
using Value_type = typename C::value_type; // C’s value type

Thus, v is a vector<X> where X is the element type of the input sequence.
The real ‘‘type magic’’ is in the selection of helper functions:

template<typename C>
void sort(C& c)
{

using Iter = Iterator_type<C>;
sor t_helper(c.begin(),c.end(),Iterator_category<Iter>{});

}

Here, I use two type functions: Iterator_type<C> returns the iterator type of C (that is, C::iterator) and
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then Iterator_categor y<Iter>{} constructs a ‘‘tag’’ value indicating the kind of iterator provided:
• std::random_access_iterator_tag if C’s iterator supports random access.
• std::forward_iterator_tag if C’s iterator supports forward iteration.

Given that, we can select between the two sorting algorithms at compile time. This technique,
called tag dispatch is one of several used in the standard library and elsewhere to improve flexibil-
ity and performance.

The standard-library support for techniques for using iterators, such as tag dispatch, comes in
the form of a simple class template iterator_traits from <iterator>. This allows simple definitions of
the type functions used in sor t():

template<typename C>
using Iterator_type = typename C::iterator; // C’s iterator type

template<typename Iter>
using Iterator_category = typename std::iterator_traits<Iter>::iterator_category; // Iter’s categor y

If you don’t want to know what kind of ‘‘compile-time type magic’’ is used to provide the standard-
library features, you are free to ignore facilities such as iterator_traits. But then you can’t use the
techniques they support to improve your own code.

11.6.2 Type Predicates

A standard-library type predicate is a simple type function that answers a fundamental question
about types. For example:

bool b1 = Is_arithmetic<int>(); // yes, int is an arithmetic type
bool b2 = Is_arithmetic<string>(); // no, std::str ing is not an arithmetic type

These predicates are found in <type_traits>. Other examples are is_class, is_pod, is_literal_type,
has_vir tual_destructor, and is_base_of. They are most useful when we write templates. For exam-
ple:

template<typename Scalar>
class complex {

Scalar re, im;
public:

static_asser t(Is_arithmetic<Scalar>(), "Sorr y, I only suppor t complex of arithmetic types");
// ...

};

To improve readability compared to using the standard library directly, I defined a type function:

template<typename T>
constexpr bool Is_arithmetic()
{

return std::is_arithmetic<T>::value ;
}

Older programs use ::value directly instead of (), but I consider that quite ugly and it exposes imple-
mentation details.
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11.7 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapters 33-35 of [Stroustrup,2013].
[2] A library doesn’t hav e to be large or complicated to be useful; §11.1.
[3] A resource is anything that has to be acquired and (explicitly or implicitly) released; §11.2.
[4] Use resource handles to manage resources (RAII); §11.2.
[5] Use unique_ptr to refer to objects of polymorphic type; §11.2.1.
[6] Use shared_ptr to refer to shared objects; §11.2.1.
[7] Prefer resource handles with specific semantics to smart pointers; §11.2.1.
[8] Prefer unique_ptr to shared_ptr; §4.6.4, §11.2.1.
[9] Prefer smart pointers to garbage collection; §4.6.4, §11.2.1.
[10] Use array where you need a sequence with a constexpr size; §11.3.1.
[11] Prefer array over built-in arrays; §11.3.1.
[12] Use bitset if you need N bits and N is not necessarily the number of bits in a built-in integer

type; §11.3.2.
[13] When using pair, consider make_pair() for type deduction; §11.3.3.
[14] When using tuple, consider make_tuple() for type deduction; §11.3.3.
[15] Time your programs before making claims about efficiency; §11.4.
[16] Use duration_cast to report time measurements with proper units; §11.4.
[17] Often, a lambda is an alternative to using bind() or mem_fn(); §11.5.
[18] Use bind() to create variants of functions and function objects; §11.5.1.
[19] Use mem_fn() to create function objects that can invoke a member function when called using

the traditional function call notation; §11.5.2.
[20] Use function when you need to store something that can be called; §11.5.3.
[21] You can write code to explicitly depend on properties of types; §11.6.
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Numerics

The purpose of computing is insight, not numbers.
– R. W. Hamming

... but for the student,
numbers are often the best road to insight.

– A. Ralston

• Introduction
• Mathematical Functions
• Numerical Algorithms
• Complex Numbers
• Random Numbers
• Vector Arithmetic
• Numeric Limits
• Advice

12.1 Introduction
C++ was not designed primarily with numeric computation in mind. However, numeric computa-
tion typically occurs in the context of other work – such as database access, networking, instrument
control, graphics, simulation, and financial analysis – so C++ becomes an attractive vehicle for
computations that are part of a larger system. Furthermore, numeric methods have come a long
way from being simple loops over vectors of floating-point numbers. Where more complex data
structures are needed as part of a computation, C++’s strengths become relevant. The net effect is
that C++ is widely used for scientific, engineering, financial, and other computation involving
sophisticated numerics. Consequently, facilities and techniques supporting such computation have
emerged. This chapter describes the parts of the standard library that support numerics.
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12.2 Mathematical Functions
In <cmath>, we find the standard mathematical functions, such as sqr t(), log(), and sin() for argu-
ments of type float, double, and long double:

Standard Mathematical Functions

abs(x) Absolute value
ceil(x) Smallest integer >= x

floor(x) Largest integer <= x

sqr t(x) Square root; x must be non-negative
cos(x) Cosine
sin(x) Sine
tan(x) Tangent
acos(x) Arccosine; the result is non-negative
asin(x) Arcsine; the result nearest to 0 is returned
atan(x) Arctangent
sinh(x) Hyperbolic sine
cosh(x) Hyperbolic cosine
tanh(x) Hyperbolic tangent
exp(x) Base e exponential
log(x) Natural logarithm, base e; x must be positive
log10(x) Base 10 logarithm

The versions for complex (§12.4) are found in <complex>. For each function, the return type is the
same as the argument type.

Errors are reported by setting errno from <cerrno> to EDOM for a domain error and to ERANGE

for a range error. For example:

void f()
{

errno = 0; // clear old error state
sqr t(−1);
if (errno==EDOM)

cerr << "sqrt() not defined for negative argument";

errno = 0; // clear old error state
pow(numeric_limits<double>::max(),2);
if (errno == ERANGE)

cerr << "result of pow() too large to represent as a double";
}

A few more mathematical functions are found in <cstdlib> and there is a separate ISO standard for
special mathematical functions [C++Math,2010].
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12.3 Numerical Algorithms
In <numeric>, we find a small set of generalized numerical algorithms, such as accumulate().

Numerical Algorithms (§iso.26.7)

x=accumulate(b,e ,i) x is the sum of i and the elements of [b:e)
x=accumulate(b,e ,i,f) accumulate using f instead of +

x=inner_product(b,e ,b2,i) x is the inner product of [b:e) and [b2:b2+(e−b)),
that is, the sum of i and (∗p1)∗(∗p2) for each p1 in [b:e)
and the corresponding p2 in [b2:b2+(e−b))

x=inner_product(b,e ,b2,i,f,f2) inner_product using f and f2 instead of + and ∗
p=par tial_sum(b,e,out) Element i of [out:p) is the sum of elements [b:b+i]
p=par tial_sum(b,e,out,f) partial_sum using f instead of +

p=adjacent_difference(b,e ,out) Element i of [out:p) is (∗b+i)−∗(b+i−1) for i>0;
if e−b>0, then ∗out is ∗b

p=adjacent_difference(b,e ,out,f) adjacent_difference using f instead of −

iota(b,e ,v) For each element in [b:e) assign ++v;
thus the sequence becomes v+1, v+2, ...

These algorithms generalize common operations such as computing a sum by letting them apply to
all kinds of sequences and by making the operation applied to elements of those sequences a
parameter. For each algorithm, the general version is supplemented by a version applying the most
common operator for that algorithm. For example:

void f()
{

list<double> lst {1, 2, 3, 4, 5, 9999.99999};
auto s = accumulate(lst.begin(),lst.end(),0.0); // calculate the sum
cout << s << '\n'; // pr int 10014.9999

}

These algorithms work for every standard-library sequence and can have operations supplied as
arguments (§12.3).

12.4 Complex Numbers
The standard library supports a family of complex number types along the lines of the complex

class described in §4.2.1. To support complex numbers where the scalars are single-precision float-
ing-point numbers (floats), double-precision floating-point numbers (doubles), etc., the standard
library complex is a template:

template<typename Scalar>
class complex {
public:

complex(const Scalar& re ={}, const Scalar& im ={});
// ...

};

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

136 Numerics Chapter 12

The usual arithmetic operations and the most common mathematical functions are supported for
complex numbers. For example:

void f(complex<float> fl, complex<double> db)
{

complex<long double> ld {fl+sqrt(db)};
db += fl∗3;
fl = pow(1/fl,2);
// ...

}

The sqr t() and pow() (exponentiation) functions are among the usual mathematical functions defined
in <complex> (§12.2).

12.5 Random Numbers
Random numbers are useful in many contexts, such as testing, games, simulation, and security.
The diversity of application areas is reflected in the wide selection of random number generators
provided by the standard library in <random>. A random number generator consists of two parts:

[1] an engine that produces a sequence of random or pseudo-random values.
[2] a distribution that maps those values into a mathematical distribution in a range.

Examples of distributions are uniform_int_distribution (where all integers produced are equally
likely), normal_distribution (‘‘the bell curve’’), and exponential_distribution (exponential growth);
each for some specified range. For example:

using my_engine = default_random_engine; // type of engine
using my_distribution = uniform_int_distribution<>; // type of distribution

my_engine re {}; // the default engine
my_distribution one_to_six {1,6}; // distr ibution that maps to the ints 1..6
auto die = bind(one_to_six,re); // make a generator

int x = die(); // roll the die: x becomes a value in [1:6]

The standard-library function bind() makes a function object that will invoke its first argument
(here, one_to_six) giv en its second argument (here, re) as its argument (§11.5.1). Thus a call die() is
equivalent to a call one_to_six(re).

Thanks to its uncompromising attention to generality and performance one expert has deemed
the standard-library random number component ‘‘what every random number library wants to be
when it grows up.’’ Howev er, it can hardly be deemed ‘‘novice friendly.’’ The using statements
makes what is being done a bit more obvious. Instead, I could just have written:

auto die = bind(uniform_int_distribution<>{1,6}, default_random_engine{});

Which version is the more readable depends entirely on the context and the reader.
For novices (of any background) the fully general interface to the random number library can be

a serious obstacle. A simple uniform random number generator is often sufficient to get started.
For example:
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Rand_int rnd {1,10}; // make a random number generator for [1:10]
int x = rnd(); // x is a number in [1:10]

So, how could we get that? We hav e to get something like die() inside a class Rand_int:

class Rand_int {
public:

Rand_int(int low, int high) :dist{low,high} { }
int operator()() { return dist(re); } // draw an int

private:
default_random_engine re;
uniform_int_distribution<> dist;

};

That definition is still ‘‘expert level,’’ but the use of Rand_int() is manageable in the first week of a
C++ course for novices. For example:

int main()
{

constexpr int max = 8;
Rand_int rnd {0,max}; // make a unifor m random number generator

vector<int> histogram(max+1); // make a vector of appropriate size
for (int i=0; i!=200; ++i)

++histogram[rnd()]; // fill histogram with the frequencies of numbers [0:max]

for (int i = 0; i!=histogram.size(); ++i) { // wr ite out a bar graph
cout << i << '\t';
for (int j=0; j!=histogram[i]; ++j) cout << '∗';
cout << endl;

}
}

The output is a (reassuringly boring) uniform distribution (with reasonable statistical variation):

0 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
6 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7 ∗∗∗∗∗∗∗∗∗∗∗
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

There is no standard graphics library for C++, so I use ‘‘ASCII graphics.’’ Obviously, there are lots
of open source and commercial graphics and GUI libraries for C++, but in this book I restrict
myself to ISO standard facilities.
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12.6 Vector Arithmetic
The vector described in §9.2 was designed to be a general mechanism for holding values, to be flex-
ible, and to fit into the architecture of containers, iterators, and algorithms. However, it does not
support mathematical vector operations. Adding such operations to vector would be easy, but its
generality and flexibility precludes optimizations that are often considered essential for serious
numerical work. Consequently, the standard library provides (in <valarray>) a vector-like template,
called valarray, that is less general and more amenable to optimization for numerical computation:

template<typename T>
class valarray {

// ...
};

The usual arithmetic operations and the most common mathematical functions are supported for
valarrays. For example:

void f(valarray<double>& a1, valarray<double>& a2)
{

valarray<double> a = a1∗3.14+a2/a1; // numer ic array operators *, +, /, and =
a2 += a1∗3.14;
a = abs(a);
double d = a2[7];
// ...

}

For more details, see §12.6. In particular, valarray offers stride access to help implement multidi-
mensional computations.

12.7 Numeric Limits
In <limits>, the standard library provides classes that describe the properties of built-in types – such
as the maximum exponent of a float or the number of bytes in an int; see §12.7. For example, we
can assert that a char is signed:

static_asser t(numeric_limits<char>::is_signed,"unsigned characters!");
static_asser t(100000<numeric_limits<int>::max(),"small ints!");

Note that the second assert (only) works because numeric_limits<int>::max() is a constexpr function
(§1.7).

12.8 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapter 40 of [Stroustrup,2013].
[2] Numerical problems are often subtle. If you are not 100% certain about the mathematical

aspects of a numerical problem, either take expert advice, experiment, or do both; §12.1.
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[3] Don’t try to do serious numeric computation using only the bare language; use libraries;
§12.1.

[4] Consider accumulate(), inner_product(), par tial_sum(), and adjacent_difference() before you
write a loop to compute a value from a sequence; §12.3.

[5] Use std::complex for complex arithmetic; §12.4.
[6] Bind an engine to a distribution to get a random number generator; §12.5.
[7] Be careful that your random numbers are sufficiently random; §12.5.
[8] Use valarray for numeric computation when run-time efficiency is more important than flexi-

bility with respect to operations and element types; §12.6.
[9] Properties of numeric types are accessible through numeric_limits; §12.7.
[10] Use numeric_limits to check that the numeric types are adequate for their use; §12.7.
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Concurrency

Keep it simple:
as simple as possible,

but no simpler.
– A. Einstein

• Introduction
• Tasks and threads
• Passing Arguments
• Returning Results
• Sharing Data
• Waiting for Events
• Communicating Tasks

future and promise; packaged_task; async()

• Advice

13.1 Introduction
Concurrency – the execution of several tasks simultaneously – is widely used to improve through-
put (by using several processors for a single computation) or to improve responsiveness (by allow-
ing one part of a program to progress while another is waiting for a response). All modern pro-
gramming languages provide support for this. The support provided by the C++ standard library is
a portable and type-safe variant of what has been used in C++ for more than 20 years and is almost
universally supported by modern hardware. The standard-library support is primarily aimed at sup-
porting systems-level concurrency rather than directly providing sophisticated higher-level concur-
rency models; those can be supplied as libraries built using the standard-library facilities.

The standard library directly supports concurrent execution of multiple threads in a single
address space. To allow that, C++ provides a suitable memory model and a set of atomic opera-
tions. The atomic operations allows lock-free programming [Dechev,2012]. The memory model

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

142 Concurrency Chapter 13

ensures that as long as a programmer avoids data races (uncontrolled concurrent access to mutable
data), everything works as one would naively expect. However, most users will see concurrency
only in terms of the standard library and libraries built on top of that. This section briefly gives
examples of the main standard-library concurrency support facilities: threads, mutexes, lock() opera-
tions, packaged_tasks, and futures. These features are built directly upon what operating systems
offer and do not incur performance penalties compared with those. Neither do they guarantee sig-
nificant performance improvements compared to what the operating system offers.

Do not consider concurrency a panacea. If a task can be done sequentially, it is often simpler
and faster to do so.

13.2 Tasks and threads
We call a computation that can potentially be executed concurrently with other computations a task.
A thread is the system-level representation of a task in a program. A task to be executed concur-
rently with other tasks is launched by constructing a std::thread (found in <thread>) with the task as
its argument. A task is a function or a function object:

void f(); // function

struct F { // function object
void operator()(); // F’s call operator (§5.5)

};

void user()
{

thread t1 {f}; // f() executes in separate thread
thread t2 {F()}; // F()() executes in separate thread

t1.join(); // wait for t1
t2.join(); // wait for t2

}

The join()s ensure that we don’t exit user() until the threads have completed. To ‘‘join’’ a thread

means to ‘‘wait for the thread to terminate.’’
Threads of a program share a single address space. In this, threads differ from processes, which

generally do not directly share data. Since threads share an address space, they can communicate
through shared objects (§13.5). Such communication is typically controlled by locks or other
mechanisms to prevent data races (uncontrolled concurrent access to a variable).

Programming concurrent tasks can be very tricky. Consider possible implementations of the
tasks f (a function) and F (a function object):

void f() { cout << "Hello "; }

struct F {
void operator()() { cout << "Parallel World!\n"; }

};

This is an example of a bad error: Here, f and F() each use the object cout without any form of
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synchronization. The resulting output would be unpredictable and could vary between different
executions of the program because the order of execution of the individual operations in the two
tasks is not defined. The program may produce ‘‘odd’’ output, such as

PaHerallllel o World!

When defining tasks of a concurrent program, our aim is to keep tasks completely separate except
where they communicate in simple and obvious ways. The simplest way of thinking of a concur-
rent task is as a function that happens to run concurrently with its caller. For that to work, we just
have to pass arguments, get a result back, and make sure that there is no use of shared data in
between (no data races).

13.3 Passing Arguments
Typically, a task needs data to work upon. We can easily pass data (or pointers or references to the
data) as arguments. Consider:

void f(vector<double>& v); // function do something with v

struct F { // function object: do something with v
vector<double>& v;
F(vector<double>& vv) :v{vv} { }
void operator()(); // application operator ; §5.5

};

int main()
{

vector<double> some_vec {1,2,3,4,5,6,7,8,9};
vector<double> vec2 {10,11,12,13,14};

thread t1 {f,ref(some_vec)}; // f(some_vec) executes in a separate thread
thread t2 {F{vec2}}; // F(vec2)() executes in a separate thread

t1.join();
t2.join();

}

Obviously, F{vec2} saves a reference to the argument vector in F. F can now use that vector and
hopefully no other task accesses vec2 while F is executing. Passing vec2 by value would eliminate
that risk.

The initialization with {f,ref(some_vec)} uses a thread variadic template constructor that can
accept an arbitrary sequence of arguments (§5.6). The ref() is a type function from <functional> that
unfortunately is needed to tell the variadic template to treat some_vec as a reference, rather than as
an object. The compiler checks that the first argument can be invoked giv en the following argu-
ments and builds the necessary function object to pass to the thread. Thus, if F::operator()() and f()

perform the same algorithm, the handling of the two tasks are roughly equivalent: in both cases, a
function object is constructed for the thread to execute.
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13.4 Returning Results
In the example in §13.3, I pass the arguments by non-const reference. I only do that if I expect the
task to modify the value of the data referred to (§1.8). That’s a somewhat sneaky, but not uncom-
mon, way of returning a result. A less obscure technique is to pass the input data by const refer-
ence and to pass the location of a place to deposit the result as a separate argument:

void f(const vector<double>& v, double∗ res); // take input from v; place result in *res

class F {
public:

F(const vector<double>& vv, double∗ p) :v{vv}, res{p} { }
void operator()(); // place result in *res

private:
const vector<double>& v; // source of input
double∗ res; // target for output

};

int main()
{

vector<double> some_vec;
vector<double> vec2;
// ...

double res1;
double res2;

thread t1 {f,cref(some_vec),&res1}; // f(some_vec,&res1) executes in a separate thread
thread t2 {F{vec2,&res2}}; // F{vec2,&res2}() executes in a separate thread

t1.join();
t2.join();

cout << res1 << ' ' << res2 << '\n';
}

This works and the technique is very common, but I don’t consider returning results through argu-
ments particularly elegant, so I return to this topic in §13.7.1.

13.5 Sharing Data
Sometimes tasks need to share data. In that case, the access has to be synchronized so that at most
one task at a time has access. Experienced programmers will recognize this as a simplification
(e.g., there is no problem with many tasks simultaneously reading immutable data), but consider
how to ensure that at most one task at a time has access to a given set of objects.

The fundamental element of the solution is a mutex, a ‘‘mutual exclusion object.’’ A thread

acquires a mutex using a lock() operation:
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mutex m; // controlling mutex
int sh; // shared data

void f()
{

unique_lock<mutex> lck {m}; // acquire mutex
sh += 7; // manipulate shared data

} // release mutex implicitly

The unique_lock’s constructor acquires the mutex (through a call m.lock()). If another thread has
already acquired the mutex, the thread waits (‘‘blocks’’) until the other thread completes its access.
Once a thread has completed its access to the shared data, the unique_lock releases the mutex (with
a call m.unlock()). When a mutex is released, threads waiting for it resume executing (‘‘are woken
up’’). The mutual exclusion and locking facilities are found in <mutex>.

The correspondence between the shared data and a mutex is conventional: the programmer sim-
ply has to know which mutex is supposed to correspond to which data. Obviously, this is error-
prone, and equally obviously we try to make the correspondence clear through various language
means. For example:

class Record {
public:

mutex rm;
// ...

};

It doesn’t take a genius to guess that for a Record called rec, rec.rm is a mutex that you are supposed
to acquire before accessing the other data of rec, though a comment or a better name might have
helped a reader.

It is not uncommon to need to simultaneously access several resources to perform some action.
This can lead to deadlock. For example, if thread1 acquires mutex1 and then tries to acquire mutex2

while thread2 acquires mutex2 and then tries to acquire mutex1, then neither task will ever proceed
further. The standard library offers help in the form of an operation for acquiring several locks
simultaneously:

void f()
{

// ...
unique_lock<mutex> lck1 {m1,defer_lock}; // defer_lock: don’t yet try to acquire the mutex
unique_lock<mutex> lck2 {m2,defer_lock};
unique_lock<mutex> lck3 {m3,defer_lock};
// ...
lock(lck1,lck2,lck3); // acquire all three locks
// ... manipulate shared data ...

} // implicitly release all mutexes

This lock() will proceed only after acquiring all its mutex arguments and will never block (‘‘go to
sleep’’) while holding a mutex. The destructors for the individual unique_locks ensure that the
mutexes are released when a thread leaves the scope.
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Communicating through shared data is pretty low lev el. In particular, the programmer has to
devise ways of knowing what work has and has not been done by various tasks. In that regard, use
of shared data is inferior to the notion of call and return. On the other hand, some people are con-
vinced that sharing must be more efficient than copying arguments and returns. That can indeed be
so when large amounts of data are involved, but locking and unlocking are relatively expensive
operations. On the other hand, modern machines are very good at copying data, especially compact
data, such as vector elements. So don’t choose shared data for communication because of ‘‘effi-
ciency’’ without thought and preferably not without measurement.

13.6 Waiting for Events
Sometimes, a thread needs to wait for some kind of external event, such as another thread complet-
ing a task or a certain amount of time having passed. The simplest ‘‘event’’ is simply time passing.
Using the time facilities found in <chrono> I can write:

using namespace std::chrono; // see §11.4

auto t0 = high_resolution_clock::now();
this_thread::sleep_for(milliseconds{20});
auto t1 = high_resolution_clock::now();

cout << duration_cast<nanoseconds>(t1−t0).count() << " nanoseconds passed\n";

Note that I didn’t even hav e to launch a thread; by default, this_thread refers to the one and only
thread.

I used duration_cast to adjust the clock’s units to the nanoseconds I wanted.
The basic support for communicating using external events is provided by condition_variables

found in <condition_variable>. A condition_variable is a mechanism allowing one thread to wait for
another. In particular, it allows a thread to wait for some condition (often called an event) to occur
as the result of work done by other threads.

Using condition_variables supports many forms of elegant and efficient sharing, but can be rather
tricky. Consider the classical example of two threads communicating by passing messages through
a queue. For simplicity, I declare the queue and the mechanism for avoiding race conditions on that
queue global to the producer and consumer:

class Message { // object to be communicated
// ...

};

queue<Message> mqueue; // the queue of messages
condition_variable mcond; // the var iable communicating events
mutex mmutex; // the locking mechanism

The types queue, condition_variable, and mutex are provided by the standard library.
The consumer() reads and processes Messages:
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void consumer()
{

while(true) {
unique_lock<mutex> lck{mmutex}; // acquire mmutex
while (mcond.wait(lck)) /* do nothing */; // release lck and wait;

// re-acquire lck upon wakeup
auto m = mqueue.front(); // get the message
mqueue .pop();
lck.unlock(); // release lck
// ... process m ...

}
}

Here, I explicitly protect the operations on the queue and on the condition_variable with a
unique_lock on the mutex. Waiting on condition_variable releases its lock argument until the wait is
over (so that the queue is non-empty) and then reacquires it.

The corresponding producer looks like this:

void producer()
{

while(true) {
Message m;
// ... fill the message ...
unique_lock<mutex> lck {mmutex}; // protect operations
mqueue .push(m);
mcond.notify_one(); // notify

} // release lock (at end of scope)
}

13.7 Communicating Tasks
The standard library provides a few facilities to allow programmers to operate at the conceptual
level of tasks (work to potentially be done concurrently) rather than directly at the lower level of
threads and locks:

[1] future and promise for returning a value from a task spawned on a separate thread
[2] packaged_task to help launch tasks and connect up the mechanisms for returning a result
[3] async() for launching of a task in a manner very similar to calling a function.

These facilities are found in <future>.

13.7.1 future and promise

The important point about future and promise is that they enable a transfer of a value between two
tasks without explicit use of a lock; ‘‘the system’’ implements the transfer efficiently. The basic
idea is simple: When a task wants to pass a value to another, it puts the value into a promise. Some-
how, the implementation makes that value appear in the corresponding future, from which it can be
read (typically by the launcher of the task). We can represent this graphically:
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future promise

value

task1: task2:

get()
set_value()

set_exception()

If we have a future<X> called fx, we can get() a value of type X from it:

X v = fx.g et(); // if necessary, wait for the value to get computed

If the value isn’t there yet, our thread is blocked until it arrives. If the value couldn’t be computed,
get() might throw an exception (from the system or transmitted from the task from which we were
trying to get() the value).

The main purpose of a promise is to provide simple ‘‘put’’ operations (called set_value() and
set_exception()) to match future’s get(). The names ‘‘future’’ and ‘‘promise’’ are historical; please
don’t blame or credit me. They are yet another fertile source of puns.

If you have a promise and need to send a result of type X to a future, you can do one of two
things: pass a value or pass an exception. For example:

void f(promise<X>& px) // a task: place the result in px
{

// ...
tr y {

X res;
// ... compute a value for res ...
px.set_value(res);

}
catch (...) { // oops: couldn’t compute res

px.set_exception(current_exception()); // pass the exception to the future’s thread
}

}

The current_exception() refers to the caught exception.
To deal with an exception transmitted through a future, the caller of get() must be prepared to

catch it somewhere. For example:

void g(future<X>& fx) // a task: get the result from fx
{

// ...
tr y {

X v = fx.g et(); // if necessary, wait for the value to get computed
// ... use v ...

}
catch (...) { // oops: someone couldn’t compute v

// ... handle error ...
}

}
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If the error doesn’t need to be handled by g() itself, the code reduces to the minimal:

void g(future<X>& fx) // a task: get the result from fx
{

// ...
X v = fx.g et(); // if necessary, wait for the value to get computed
// ... use v ...

}

13.7.2 packaged_task

How do we get a future into the task that needs a result and the corresponding promise into the
thread that should produce that result? The packaged_task type is provided to simplify setting up
tasks connected with futures and promises to be run on threads. A packaged_task provides wrapper
code to put the return value or exception from the task into a promise (like the code shown in
§13.7.1). If you ask it by calling get_future, a packaged_task will give you the future corresponding
to its promise. For example, we can set up two tasks to each add half of the elements of a
vector<double> using the standard-library accumulate() (§12.3):

double accum(double∗ beg, double∗ end, double init)
// compute the sum of [beg:end) starting with the initial value init

{
return accumulate(beg,end,init);

}

double comp2(vector<double>& v)
{

using Task_type = double(double∗,double∗,double); // type of task

packaged_task<Task_type> pt0 {accum}; // package the task (i.e., accum)
packaged_task<Task_type> pt1 {accum};

future<double> f0 {pt0.get_future()}; // get hold of pt0’s future
future<double> f1 {pt1.get_future()}; // get hold of pt1’s future

double∗ first = &v[0];
thread t1 {move(pt0),first,first+v.siz e()/2,0}; // star t a thread for pt0
thread t2 {move(pt1),first+v.siz e()/2,first+v.siz e(),0}; // star t a thread for pt1

// ...

return f0.get()+f1.g et(); // get the results
}

The packaged_task template takes the type of the task as its template argument (here Task_type, an
alias for double(double∗,double∗,double)) and the task as its constructor argument (here, accum).
The move() operations are needed because a packaged_task cannot be copied. The reason that a
packaged_task cannot be copied is that it is a resource handle: it owns its promise and is (indirectly)
responsible for whatever resoures its task may own.
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Please note the absence of explicit mention of locks in this code: we are able to concentrate on
tasks to be done, rather than on the mechanisms used to manage their communication. The two
tasks will be run on separate threads and thus potentially in parallel.

13.7.3 async()

The line of thinking I have pursued in this chapter is the one I believe to be the simplest yet still
among the most powerful: Treat a task as a function that may happen to run concurrently with other
tasks. It is far from the only model supported by the C++ standard library, but it serves well for a
wide range of needs. More subtle and tricky models, e.g., styles of programming relying on shared
memory, can be used as needed.

To launch tasks to potentially run asynchronously, we can use async():

double comp4(vector<double>& v)
// spawn many tasks if v is large enough

{
if (v.siz e()<10000) // is it wor th using concurrency?

return accum(v.begin(),v.end(),0.0);

auto v0 = &v[0];
auto sz = v.siz e();

auto f0 = async(accum,v0,v0+sz/4,0.0); // first quarter
auto f1 = async(accum,v0+sz/4,v0+sz/2,0.0); // second quarter
auto f2 = async(accum,v0+sz/2,v0+sz∗3/4,0.0); // third quarter
auto f3 = async(accum,v0+sz∗3/4,v0+sz,0.0); // four th quar ter

return f0.get()+f1.g et()+f2.g et()+f3.g et(); // collect and combine the results
}

Basically, async() separates the ‘‘call part’’ of a function call from the ‘‘get the result part,’’ and sep-
arates both from the actual execution of the task. Using async(), you don’t hav e to think about
threads and locks. Instead, you think just in terms of tasks that potentially compute their results
asynchronously. There is an obvious limitation: Don’t even think of using async() for tasks that
share resources needing locking – with async() you don’t even know how many threads will be used
because that’s up to async() to decide based on what it knows about the system resources available
at the time of a call. For example, async() may check whether any idle cores (processors) are avail-
able before deciding how many threads to use.

Using a guess about the cost of computation relative to the cost of launching a thread, such as
v.siz e()<10000, is very primitive and prone to gross mistakes about performance. However, this is
not the place for a proper disussion about how to manage threads. Don’t take this estimate as more
than a simple and probably poor guess.

Please note that async() is not just a mechanism specialized for parallel computation for
increased performance. For example, it can also be used to spawn a task for getting information
from a user, leaving the ‘‘main program’’ active with something else (§13.7.3).
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13.8 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapters 41-42 of [Stroustrup,2013].
[2] Use concurrency to improve responsiveness or to improve throughput; §13.1.
[3] Work at the highest level of abstraction that you can afford; §13.1.
[4] Consider processes as an alternative to threads; §13.1.
[5] The standard-library concurrency facilities are type safe; §13.1.
[6] The memory model exists to save most programmers from having to think about the machine

architecture level of computers; §13.1.
[7] The memory model makes memory appear roughly as naively expected; §13.1.
[8] Atomics allow for lock-free programming; §13.1.
[9] Leave lock-free programming to experts; §13.1.
[10] Sometimes, a sequential solution is simpler and faster than a concurrent solution; §13.1.
[11] Avoid data races; §13.1, §13.2.
[12] A thread is a type-safe interface to a system thread; §13.2.
[13] Use join() to wait for a thread to complete; §13.2.
[14] Avoid explicitly shared data whenever you can; §13.2.
[15] Use unique_lock to manage mutexes; §13.5.
[16] Use lock() to acquire multiple locks; §13.5.
[17] Use condition_variables to manage communication among threads; §13.6.
[18] Think in terms of tasks that can be executed concurrently, rather than directly in terms of

threads; §13.7.
[19] Value simplicity; §13.7.
[20] Prefer packaged_task and futures over direct use of threads and mutexes; §13.7.
[21] Return a result using a promise and get a result from a future; §13.7.1.
[22] Use packaged_tasks to handle exceptions thrown by tasks and to arrange for value return;

§13.7.2.
[23] Use a packaged_task and a future to express a request to an external service and wait for its

response; §13.7.2.
[24] Use async() to launch simple tasks; §13.7.3.
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History and Compatibility

Hurry Slowly
(festina lente).

– Octavius, Caesar Augustus
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• C/C++ Compatibility
C and C++ Are Siblings; Compatibility Problems

• Bibliography
• Advice

14.1 History
I inv ented C++, wrote its early definitions, and produced its first implementation. I chose and for-
mulated the design criteria for C++, designed its major language features, developed or helped to
develop many of the early libraries, and was responsible for the processing of extension proposals
in the C++ standards committee.

C++ was designed to provide Simula’s facilities for program organization [Dahl,1970] together
with C’s efficiency and flexibility for systems programming [Kernighan,1978]. Simula is the initial
source of C++’s abstraction mechanisms. The class concept (with derived classes and virtual func-
tions) was borrowed from it. However, templates and exceptions came to C++ later with different
sources of inspiration.

The evolution of C++ was always in the context of its use. I spent a lot of time listening to
users and seeking out the opinions of experienced programmers. In particular, my colleagues at
AT&T Bell Laboratories were essential for the growth of C++ during its first decade.
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This section is a brief overview; it does not try to mention every language feature and library
component. Furthermore, it does not go into details. For more information, and in particular for
more names of people who contributed, see [Stroustrup,1993], [Stroustrup,2007], and [Strous-
trup,1994]. My two papers from the ACM History of Programming Languages conference and my
Design and Evolution of C++ book (known as ‘‘D&E’’) describe the design and evolution of C++
in detail and document influences from other programming languages.

Most of the documents produced as part of the ISO C++ standards effort are available online
[WG21]. In my FAQ, I try to maintain a connection between the standard facilities and the people
who proposed and refined those facilities [Stroustrup,2010]. C++ is not the work of a faceless,
anonymous committee or of a supposedly omnipotent ‘‘dictator for life’’; it is the work of many
dedicated, experienced, hard-working individuals.

14.1.1 Timeline

The work that led to C++ started in the fall of 1979 under the name ‘‘C with Classes.’’ Here is a
simplified timeline:

1979 Work on ‘‘C with Classes’’ started. The initial feature set included classes and derived
classes, public/private access control, constructors and destructors, and function declara-
tions with argument checking. The first library supported non-preemptive concurrent
tasks and random number generators.

1984 ‘‘C with Classes’’ was renamed to C++. By then, C++ had acquired virtual functions,
function and operator overloading, references, and the I/O stream and complex number
libraries.

1985 First commercial release of C++ (October 14). The library included I/O streams, com-
plex numbers, and tasks (non-preemptive scheduling).

1985 The C++ Programming Language (‘‘TC++PL,’’ October 14) [Stroustrup,1986].
1989 The Annotated C++ Reference Manual (‘‘the ARM’’) [Ellis,1989].
1991 The C++ Programming Language, Second Edition [Stroustrup,1991], presenting generic

programming using templates and error handling based on exceptions (including the
‘‘Resource Acquisition Is Initialization’’ general resource management idiom).

1997 The C++ Programming Language, Third Edition [Stroustrup,1997] introduced ISO C++,
including namespaces, dynamic_cast, and many refinements of templates. The standard
library added the STL framework of generic containers and algorithms.

1998 ISO C++ standard [C++,1998].
2002 Work on a revised standard, colloquially named C++0x, started.
2003 A ‘‘bug fix’’ revision of the ISO C++ standard was issued. A C++ Technical Report

introduced new standard-library components, such as regular expressions, unordered con-
tainers (hash tables), and resource management pointers, which later became part of
C++0x.

2006 An ISO C++ Technical Report on Performance was issued to answer questions of cost,
predictability, and techniques, mostly related to embedded systems programming
[C++,2004].

2009 C++0x was feature complete. It provided uniform initialization, move semantics, vari-
adic template arguments, lambda expressions, type aliases, a memory model suitable for
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concurrency, and much more. The standard library added several components, including
threads, locks, and most of the components from the 2003 Technical Report.

2011 ISO C++11 standard was formally approved [C++,2011].
2012 Work on future ISO C++ standards (referred to as C++14 and C++17) started.
2013 The first complete C++11 implementations emerged.
2013 The C++ Programming Language, Fourth Edition introduced C++11.

During development, C++11 was known as C++0x. As is not uncommon in large projects, we
were overly optimistic about the completion date.

14.1.2 The Early Years

I originally designed and implemented the language because I wanted to distribute the services of a
UNIX kernel across multiprocessors and local-area networks (what are now known as multicores
and clusters). For that, I needed some event-driven simulations for which Simula would have been
ideal, except for performance considerations. I also needed to deal directly with hardware and pro-
vide high-performance concurrent programming mechanisms for which C would have been ideal,
except for its weak support for modularity and type checking. The result of adding Simula-style
classes to C (Classic C; §14.3.1), ‘‘C with Classes,’’ was used for major projects in which its facili-
ties for writing programs that use minimal time and space were severely tested. It lacked operator
overloading, references, virtual functions, templates, exceptions, and many, many details [Strous-
trup,1982]. The first use of C++ outside a research organization started in July 1983.

The name C++ (pronounced ‘‘see plus plus’’) was coined by Rick Mascitti in the summer of
1983 and chosen as the replacement for ‘‘C with Classes’’ by me. The name signifies the evolu-
tionary nature of the changes from C; ‘‘++’’ is the C increment operator. The slightly shorter name
‘‘C+’’ is a syntax error; it had also been used as the name of an unrelated language. Connoisseurs
of C semantics find C++ inferior to ++C. The language was not called D, because it was an exten-
sion of C, because it did not attempt to remedy problems by removing features, and because there
already existed several would-be C successors named D. For yet another interpretation of the name
C++, see the appendix of [Orwell,1949].

C++ was designed primarily so that my friends and I would not have to program in assembler,
C, or various then-fashionable high-level languages. Its main purpose was to make writing good
programs easier and more pleasant for the individual programmer. In the early years, there was no
C++ paper design; design, documentation, and implementation went on simultaneously. There was
no ‘‘C++ project’’ either, or a ‘‘C++ design committee.’’ Throughout, C++ evolved to cope with
problems encountered by users and as a result of discussions among my friends, my colleagues,
and me.

The very first design of C++ (then called ‘‘C with Classes’’) included function declarations with
argument type checking and implicit conversions, classes with the public/private distinction between
the interface and the implementation, derived classes, and constructors and destructors. I used
macros to provide primitive parameterization. This was in non-experimental use by mid-1980.
Late that year, I was able to present a set of language facilities supporting a coherent set of pro-
gramming styles. In retrospect, I consider the introduction of constructors and destructors most
significant. In the terminology of the time, ‘‘a constructor creates the execution environment for
the member functions and the destructor reverses that.’’ Here is the root of C++’s strategies for
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resource management (causing a demand for exceptions) and the key to many techniques for mak-
ing user code short and clear. If there were other languages at the time that supported multiple con-
structors capable of executing general code, I didn’t (and don’t) know of them. Destructors were
new in C++.

C++ was released commercially in October 1985. By then, I had added inlining (§1.4, §4.2.1),
consts (§1.7), function overloading (§1.4), references (§1.8), operator overloading (§4.2.1), and vir-
tual functions (§4.4). Of these features, support for run-time polymorphism in the form of virtual
functions was by far the most controversial. I knew its worth from Simula but found it impossible
to convince most people in the systems programming world of its value. Systems programmers
tended to view indirect function calls with suspicion, and people acquainted with other languages
supporting object-oriented programming had a hard time believing that vir tual functions could be
fast enough to be useful in systems code. Conversely, many programmers with an object-oriented
background had (and many still have) a hard time getting used to the idea that you use virtual func-
tion calls only to express a choice that must be made at run time. The resistance to virtual func-
tions may be related to a resistance to the idea that you can get better systems through more regular
structure of code supported by a programming language. Many C programmers seem convinced
that what really matters is complete flexibility and careful individual crafting of every detail of a
program. My view was (and is) that we need every bit of help we can get from languages and
tools: the inherent complexity of the systems we are trying to build is always at the edge of what
we can express.

Much of the design of C++ was done on the blackboards of my colleagues. In the early years,
the feedback from Stu Feldman, Alexander Fraser, Steve Johnson, Brian Kernighan, Doug McIlroy,
and Dennis Ritchie was invaluable.

In the second half of the 1980s, I continued to add language features in response to user com-
ments. The most important of those were templates [Stroustrup,1988] and exception handling
[Koenig,1990], which were considered experimental at the time the standards effort started. In the
design of templates, I was forced to decide among flexibility, efficiency, and early type checking.
At the time, nobody knew how to simultaneously get all three. To compete with C-style code for
demanding systems applications, I felt that I had to choose the first two properties. In retrospect, I
think the choice was the correct one, and the search for better type checking of templates continues
[DosReis,2006] [Gregor,2006] [Sutton,2011] [Stroustrup,2012a]. The design of exceptions focused
on multilevel propagation of exceptions, the passing of arbitrary information to an error handler,
and the integration between exceptions and resource management by using local objects with
destructors to represent and release resources (what I clumsily called Resource Acquisition Is
Initialization; §4.2.2).

I generalized C++’s inheritance mechanisms to support multiple base classes [Strous-
trup,1987a]. This was called multiple inheritance and was considered difficult and controversial. I
considered it far less important than templates or exceptions. Multiple inheritance of abstract
classes (often called interfaces) is now universal in languages supporting static type checking and
object-oriented programming.

The C++ language evolved hand in hand with some of the key library facilities presented in this
book. For example, I designed the complex [Stroustrup,1984], vector, stack, and (I/O) stream
[Stroustrup,1985] classes together with the operator overloading mechanisms. The first string and
list classes were developed by Jonathan Shopiro and me as part of the same effort. Jonathan’s
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string and list classes were the first to see extensive use as part of a library. The string class from
the standard C++ library has its roots in these early efforts. The task library described in [Strous-
trup,1987b] was part of the first ‘‘C with Classes’’ program ever written in 1980. I wrote it and its
associated classes to support Simula-style simulations. Unfortunately, we had to wait until 2011
(30 years!) to get concurrency support standardized and universally available (Chapter 13). The
development of the template facility was influenced by a variety of vector, map, list, and sor t tem-
plates devised by Andrew Koenig, Alex Stepanov, me, and others.

The most important innovation in the 1998 standard library was the inclusion of the STL, a
framework of algorithms and containers, in the standard library (Chapter 9, Chapter 10). It was the
work of Alex Stepanov (with Dave Musser, Meng Lee, and others) based on more than a decade’s
work on generic programming. The STL has been massively influential within the C++ community
and beyond.

C++ grew up in an environment with a multitude of established and experimental programming
languages (e.g., Ada [Ichbiah,1979], Algol 68 [Woodward,1974], and ML [Paulson,1996]). At the
time, I was comfortable in about 25 languages, and their influences on C++ are documented in
[Stroustrup,1994] and [Stroustrup,2007]. However, the determining influences always came from
the applications I encountered. That was a deliberate policy to hav e the development of C++
‘‘problem driven’’ rather than imitative.

14.1.3 The ISO C++ Standards

The explosive growth of C++ use caused some changes. Sometime during 1987, it became clear
that formal standardization of C++ was inevitable and that we needed to start preparing the ground
for a standardization effort [Stroustrup,1994]. The result was a conscious effort to maintain contact
between implementers of C++ compilers and major users. This was done through paper and elec-
tronic mail and through face-to-face meetings at C++ conferences and elsewhere.

AT&T Bell Labs made a major contribution to C++ and its wider community by allowing me to
share drafts of revised versions of the C++ reference manual with implementers and users.
Because many of those people worked for companies that could be seen as competing with AT&T,
the significance of this contribution should not be underestimated. A less enlightened company
could have caused major problems of language fragmentation simply by doing nothing. As it hap-
pened, about a hundred individuals from dozens of organizations read and commented on what
became the generally accepted reference manual and the base document for the ANSI C++ stan-
dardization effort. Their names can be found in The Annotated C++ Reference Manual (‘‘the
ARM’’) [Ellis,1989]. The X3J16 committee of ANSI was convened in December 1989 at the ini-
tiative of Hewlett-Packard. In June 1991, this ANSI (American national) standardization of C++
became part of an ISO (international) standardization effort for C++ and named WG21. From
1990, these joint C++ standards committees have been the main forum for the evolution of C++ and
the refinement of its definition. I served on these committees throughout. In particular, as the
chairman of the working group for extensions (later called the evolution group), I was directly
responsible for handling proposals for major changes to C++ and the addition of new language fea-
tures. An initial draft standard for public review was produced in April 1995. The first ISO C++
standard (ISO/IEC 14882-1998) [C++,1998] was ratified by a 22-0 national vote in 1998. A ‘‘bug
fix release’’ of this standard was issued in 2003, so you sometimes hear people refer to C++03, but
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that is essentially the same language as C++98.
The current C++, C++11, known for years as C++0x, is the work of the members of WG21.

The committee worked under increasingly onerous self-imposed processes and procedures. These
processes probably led to a better (and more rigorous) specification, but they also limited inno-
vation [Stroustrup,2007]. An initial draft standard for public review was produced in 2009. The
second ISO C++ standard (ISO/IEC 14882-2011) [C++,2011] was ratified by a 21-0 national vote
in August 2011.

One reason for the long gap between the two standards is that most members of the committee
(including me) were under the mistaken impression that the ISO rules required a ‘‘waiting period’’
after a standard was issued before starting work on new features. Consequently, serious work on
new language features did not start until 2002. Other reasons included the increased size of modern
languages and their foundation libraries. In terms of pages of standards text, the language grew by
about 30% and the standard library by about 100%. Much of the increase was due to more detailed
specification, rather than new functionality. Also, the work on a new C++ standard obviously had
to take great care not to compromise older code through incompatible changes. There are billions
of lines of C++ code in use that the committee must not break.

C++11 added massively to the standard library and pushed to complete the feature set needed
for a programming style that is a synthesis of the ‘‘paradigms’’ and idioms that have proven suc-
cessful with C++98. The overall aims for the C++11 effort were:

• Make C++ a better language for systems programming and library building.
• Make C++ easier to teach and learn.

The aims are documented and detailed in [Stroustrup,2007].
A major effort was made to make concurrent systems programming type-safe and portable.

This involved a memory model (§13.1) and a set of facilities for lock-free programming, which is
primarily the work of Hans Boehm, Brian McKnight, and others. On top of that, we added the
threads library.

14.2 C++11 Extensions
Here, I list the language features and standard-library components that have been added to C++ for
the C++11 standard.

14.2.1 Language Features

Looking at a list of language features can be quite bewildering. Remember that a language feature
is not meant to be used in isolation. In particular, most features that are new in C++11 make no
sense in isolation from the framework provided by older features.

[1] Uniform and general initialization using {}-lists (§1.5, §4.2.3)
[2] Type deduction from initializer: auto (§1.5)
[3] Prevention of narrowing (§1.5)
[4] Generalized and guaranteed constant expressions: constexpr (§1.7)
[5] Range-for-statement (§1.8)
[6] Null pointer keyword: nullptr (§1.8)
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[7] Scoped and strongly typed enums: enum class (§2.5)
[8] Compile-time assertions: static_asser t (§3.4.3)
[9] Language mapping of {}-list to std::initializ er_list (§4.2.3)
[10] Rvalue references (enabling move semantics; §4.6.2)
[11] Nested template arguments ending with >> (no space between the >s)
[12] Lambdas (§5.5)
[13] Variadic templates (§5.6)
[14] Type and template aliases (§5.7)
[15] Unicode characters
[16] long long integer type
[17] Alignment controls: alignas and alignof

[18] The ability to use the type of an expression as a type in a declaration: decltype

[19] Raw string literals (§7.3)
[20] Generalized POD (‘‘Plain Old Data’’)
[21] Generalized unions
[22] Local classes as template arguments
[23] Suffix return type syntax
[24] A syntax for attributes and two standard attributes: [[carries_dependency]] and [[noreturn]]

[25] Preventing exception propagation: the noexcept specifier (§3.4.1)
[26] Testing for the possibility of a throw in an expression: the noexcept operator.
[27] C99 features: extended integral types (i.e., rules for optional longer integer types); con-

catenation of narrow/wide strings; __STDC_HOSTED__; _Pragma(X); vararg macros and
empty macro arguments

[28] __func__ as the name of a string holding the name of the current function
[29] inline namespaces
[30] Delegating constructors
[31] In-class member initializers
[32] Control of defaults: default and delete (§4.6.5)
[33] Explicit conversion operators
[34] User-defined literals
[35] More explicit control of template instantiation: extern templates
[36] Default template arguments for function templates
[37] Inheriting constructors
[38] Override controls: override and final (§4.5.1)
[39] Simpler and more general SFINAE rule
[40] Memory model (§13.1)
[41] Thread-local storage: thread_local

For a more complete description of the changes to C++98 in C++11, see [Stroustrup,2013].

14.2.2 Standard-Library Components

The C++11 additions to the standard library come in two forms: new components (such as the regu-
lar expression matching library) and improvements to C++98 components (such as move construc-
tors for containers).
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[1] initializ er_list constructors for containers (§4.2.3)
[2] Move semantics for containers (§4.6.2, §9.2)
[3] A singly-linked list: forward_list (§9.6)
[4] Hash containers: unordered_map, unordered_multimap, unordered_set, and unordered_mul-

tiset (§9.6, §9.5)
[5] Resource management pointers: unique_ptr, shared_ptr, and weak_ptr (§11.2.1)
[6] Concurrency support: thread (§13.2), mutexes (§13.5), locks (§13.5), and condition vari-

ables (§13.6)
[7] Higher-level concurrency support: packaged_thread, future, promise, and async() (§13.7)
[8] tuples (§11.3.3)
[9] Regular expressions: reg ex (§7.3)
[10] Random numbers: uniform_int_distribution, normal_distribution, random_engine, etc.

(§12.5)
[11] Integer type names, such as int16_t, uint32_t, and int_fast64_t

[12] A fixed-sized contiguous sequence container: array (§11.3.1)
[13] Copying and rethrowing exceptions (§13.7.1)
[14] Error reporting using error codes: system_error

[15] emplace() operations for containers
[16] Wide use of constexpr functions
[17] Systematic use of noexcept functions
[18] Improved function adaptors: function and bind() (§11.5)
[19] string to numeric value conversions
[20] Scoped allocators
[21] Type traits, such as is_integral and is_base_of (§11.6.2)
[22] Time utilities: duration and time_point (§11.4)
[23] Compile-time rational arithmetic: ratio

[24] Abandoning a process: quick_exit

[25] More algorithms, such as move(), copy_if(), and is_sor ted() (Chapter 10)
[26] Garbage collection ABI (§4.6.4)
[27] Low-level concurrency support: atomics

14.2.3 Deprecated Features

By deprecating a feature, the standards committee expresses the wish that the feature will go away.
However, the committee does not have a mandate to immediately remove a heavily used feature –
however redundant or dangerous it may be. Thus, a deprecation is a strong hint to avoid the fea-
ture. It may disappear in the future. Compilers are likely to issue warnings for uses of deprecated
features. However, deprecated features are part of the standard and history shows that unfortu-
nately they tend to remain supported ‘‘forever’’ for reasons of compatibility.

• Generation of the copy constructor and the copy assignment is deprecated for a class with a
destructor.

• It is no longer allowed to assign a string literal to a char∗. Instead of char∗ as a target for
assignment and initializations with string literals, use const char∗ or auto.
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• C++98 exception specifications are deprecated:

void f() throw(X,Y); // C++98; now deprecated

The support facilities for exception specifications, unexcepted_handler, set_unexpected(),
get_unexpected(), and unexpected(), are similarly deprecated. Instead, use noexcept

(§3.4.1).
• Some C++ standard-library function objects and associated functions are deprecated. Most

relate to argument binding. Instead use lambdas, bind, and function (§11.5).
• The auto_ptr is deprecated. Instead, use unique_ptr (§11.2.1).
• The use of the storage specifier register is deprecated.
• The use of ++ on a bool is deprecated.

In addition, the committee did remove the essentially unused expor t feature, because it was com-
plex and not shipped by the major vendors.

14.2.4 Casts

C-style casts should have been deprecated in favor of named casts. The named casts are:
• static_cast: for reasonably well-behaved conversions, such as from a pointer to a base to its

derived class.
• reinterpret_cast: For really nasty, non-portable conversions, such as conversion of an int to a

pointer type.
• const_cast: For casting away const.

For example:

Widg et∗ pw = static_cast<Widget∗>(pv); // pv is a void* supposed to point to a Widget
auto dd = reintrepret_cast<Device_driver∗>(0xFF00); // 0xFF is supposed to point to a device driver
char∗ pc = const_cast<char∗>("Casts are inherently dang erous");

A literal starting with 0x is a hexadecimal (base 16) integer.
Programmers should seriously consider banning C-style casts from their own programs. Where

explicit type conversion is necessary, a combination of named casts can do what a C-style cast can.
The named casts should be preferred because they are more explicit and more visible.

Expricit type conversion can be completely avoided in most high-level code, so consider every
cast (however expressed) a blemish on your design. Consider defining a function narrow_cast<T>(v)

that checks if the value v can be represented as a T without loss of information (without narrowing)
and throws an exception if it cannot For class hierachy navigation, prefer the checked dynamic_cast

(§4.5.3).

14.3 C/C++ Compatibility
With minor exceptions, C++ is a superset of C (meaning C11; [C11]). Most differences stem from
C++’s greater emphasis on type checking. Well-written C programs tend to be C++ programs as
well. A compiler can diagnose every difference between C++ and C. The C99/C++11 incompati-
bilities are listed in §iso.C. At the time of writing, C11 is still very new and most C code is Classic
C or C99 [C99].
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14.3.1 C and C++ Are Siblings

Classic C has two main descendants: ISO C and ISO C++. Over the years, these languages have
ev olved at different paces and in different directions. One result of this is that each language pro-
vides support for traditional C-style programming in slightly different ways. The resulting incom-
patibilities can make life miserable for people who use both C and C++, for people who write in
one language using libraries implemented in the other, and for implementers of libraries and tools
for C and C++.

How can I call C and C++ siblings? Clearly, C++ is a descendant of C. However, look at a
simplified family tree:

BCPLSimula

B

K&R C

Classic C

C with Classes

Early C++

ARM C++

C++98

C++11

C89

C99

C11

1967

1978

1980

1985

1989

1998

2011

A solid line means a massive inheritance of features, a dashed line a borrowing of major features,
and a dotted line a borrowing of minor features. From this, ISO C and ISO C++ emerge as the two
major descendants of K&R C [Kernighan,1978], and as siblings. Each carries with it the key
aspects of Classic C, and neither is 100% compatible with Classic C. I picked the term ‘‘Classic
C’’ from a sticker that used to be affixed to Dennis Ritchie’s terminal. It is K&R C plus enumera-
tions and struct assignment. BCPL is defined by [Richards,1980] and C89 by [C90].

Incompatibilities are nasty for programmers in part because they create a combinatorial explo-
sion of alternatives. Consider a simple Venn diagram:
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C++98 C99

C89

C++11 C11

The areas are not to scale. Both C++11 and C11 have most of K&R C as a subset. C++11 has
most of C11 as a subset. There are features belonging to most of the distinct areas. For example:

C89 only Call of undeclared function
C99 only Variable-length arrays (VLAs)
C++ only Templates
C89 and C99 Algol-style function definitions
C89 and C++ Use of the C99 keyword restrict as an identifier
C++ and C99 // comments
C89, C++, and C99 structs
C++11 only Move semantics (using rvalue references; &&)
C11 only Type-generic expressions using the _Generic keyword
C++11 and C11 Atomics

Note that differences between C and C++ are not necessarily the result of changes to C made in
C++. In several cases, the incompatibilities arise from features adopted incompatibly into C long
after they were common in C++. Examples are the ability to assign a T∗ to a void∗ and the linkage
of global consts [Stroustrup,2002]. Sometimes, a feature was even incompatibly adopted into C
after it was part of the ISO C++ standard, such as details of the meaning of inline.

14.3.2 Compatibility Problems

There are many minor incompatibilities between C and C++. All can cause problems for a pro-
grammer, but all can be coped with in the context of C++. If nothing else, C code fragments can be
compiled as C and linked to using the extern "C" mechanism.

The major problems for converting a C program to C++ are likely to be:
• Suboptimal design and programming style.
• A void∗ implicitly converted to a T∗ ( that is, converted without a cast).
• C++ keywords used as identifiers in C code.
• Incomparible linkage between code fragments compiled as C and code fragments compiled

as C++.
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14.3.2.1 Style Problems

Natually, a C program is written in a C style, such as the style used in K&R [Kernighan,1988].
This implies widespread use of pointers and arrays, and probably many macros. These facilities are
hard to use reliably in a large program. Resource management and error handling are often ad hoc,
documented (rather than language and tool supported), and often incompletely documented and
adhered to. A simple line-for-line conversion of a C program into a C++ program yields a program
that is often a bit better checked. In fact, I have nev er converted a C program into C++ without
finding some bug. However, the fundamental structure is unchanged, and so are the fundamental
sources of errors. If you had incomplete error handling, resource leaks, or buffer overflows in the
original C program, they will still be there in the C++ version. To obtain major benefits, you must
make changes to the fundamental structure of the code:

[1] Don’t think of C++ as C with a few features added. C++ can be used that way, but only
suboptimally. To get really major advantages from C++ as compared to C, you need to
apply different design and implementation styles.

[2] Use the C++ standard library as a teacher of new techniques and programming styles.
Note the difference from the C standard library (e.g., = rather than strcpy() for copying
and == rather than strcmp() for comparing).

[3] Macro substitution is almost never necessary in C++. Use const (§1.7), constexpr (§1.7),
enum or enum class (§2.5) to define manifest constants, inline (§4.2.1) to avoid function-
calling overhead, templates (Chapter 5) to specify families of functions and types, and
namespaces (§3.3) to avoid name clashes.

[4] Don’t declare a variable before you need it, and initialize it immediately. A declaration
can occur anywhere a statement can (§1.9), in for-statement initializers (§1.8), and in con-
ditions (§4.5.3).

[5] Don’t use malloc(). The new operator (§4.2.2) does the same job better, and instead of
realloc(), try a vector (§4.2.3, §10.1). Don’t just replace malloc() and free() with ‘‘naked’’
new and delete (§4.2.2).

[6] Avoid void∗, unions, and casts, except deep within the implementation of some function
or class. Their use limits the support you can get from the type system and can harm per-
formance. In most cases, a cast is an indication of a design error.

[7] If you must use an explicit type conversion, use an appropriate named cast (e.g.,
static_cast; §14.2.3) for a more precise statement of what you are trying to do.

[8] Minimize the use of arrays and C-style strings. C++ standard-library strings (§7.2), arrays
(§11.3.1), and vectors (§9.2) can often be used to write simpler and more maintainable
code compared to the traditional C style. In general, try not to build yourself what has
already been provided by the standard library.

[9] Avoid pointer arithmetic except in very specialized code (such as a memory manager) and
for simple array traversal (e.g., ++p).

[10] Do not assume that something laboriously written in C style (avoiding C++ features such
as classes, templates, and exceptions) is more efficient than a shorter alternative (e.g.,
using standard-library facilities). Often (but of course not always), the opposite is true.
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14.3.2.2 void∗

In C, a void∗ may be used as the right-hand operand of an assignment to or initialization of a vari-
able of any pointer type; in C++ it may not. For example:

void f(int n)
{

int∗ p = malloc(n∗siz eof(int)); /* not C++; in C++, allocate using ‘‘new’’ */
// ...

}

This is probably the single most difficult incompatibility to deal with. Note that the implicit con-
version of a void∗ to a different pointer type is not in general harmless:

char ch;
void∗ pv = &ch;
int∗ pi = pv; // not C++
∗pi = 666; // overwr ite ch and other bytes near ch

If you use both languages, cast the result of malloc() to the right type. If you use only C++, avoid
malloc().

14.3.2.3 C++ Keywords

C++ provides many more keywords than C does. If one of these appears as an identifier in a C pro-
gram, that program must be modified to make it a C++ program:

C++ Keywords That Are Not C Keywords

alignas alignof and and_eq asm bitand

bitor bool catch char16_t char32_t class

compl const_cast constexpr decltype delete dynamic_cast

explicit false friend inline mutable namespace

new noexcept not not_eq nullptr operator

or_eq private protected public reinterpret_cast static_asser t

static_cast template this thread_local throw true

tr y typeid typename using virtual wchar_t

xor xor_eq

In addition, the word expor t is reserved for future use. C99 adopted inline.
In C, some of the C++ keywords are macros defined in standard headers:

C++ Keywords That Are C Macros

and and_eq bitand bitor bool compl false not not_eq

or or_eq true wchar_t xor xor_eq

This implies that in C they can be tested using #ifdef, redefined, etc.
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14.3.2.4 Linkage

C and C++ can (and often is) implemented to use different linkage conventions. The most basic
reason for that is C++’s greater emphasis on type checking. A practical reason is that C++ supports
overloading, so that there can be two global functions called open(). This has to be reflected in the
way the linker works.

To giv e a C++ function C linkage (so that it can be called from a C program fragment) or to
allow a C function to be called from a C++ program fragment, declare it extern "C". For example:

extern "C" double sqrt(double);

Now sqr t(double) can be called from a C or a C++ code fragment. The definition of sqr t(double)

can also be compiled as a C function or as a C++ function.
Only one function of a given name in a scope can have C linkage (because C doesn’t allow

function overloading). A linkage specification does not affect type checking, so the C++ rules for
function calls and argument checking still apply to a function declared extern"C".
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14.5 Advice
[1] The material in this chapter roughly corresponds to what is described in much greater detail

in Chapters 1 and 44 of [Stroustrup,2013].
[2] The ISO C++ standard [C++,2011] defines C++.
[3] When learning C++, don’t focus on language features in isolation; §14.2.1.
[4] By now, many people have been using C++ for a decade or two. Many more are using C++

in a single environment and have learned to live with the restrictions imposed by early com-
pilers and first-generation libraries. Often, what an experienced C++ programmer has failed
to notice over the years is not the introduction of new features as such, but rather the changes
in relationships between features that make fundamental new programming techniques feasi-
ble. In other words, what you didn’t think of when first learning C++ or found impractical
just might be a superior approach today. You find out only by reexamining the basics. Take
the opportunity offered by the new C++11 facilities to modernize your design and
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programming techniques:
[1] Use constructors to establish invariants (§3.4.2).
[2] Use constructor/destructor pairs to simplify resource management (RAII; §4.2.2).
[3] Avoid ‘‘naked’’ new and delete (§4.2.2).
[4] Use containers and algorithms rather than built-in arrays and ad hoc code (Chapter 9,

Chapter 10).
[5] Prefer standard-library facilities to locally developed code (Chapter 6).
[6] Use exceptions, rather than error codes, to report errors that cannot be handled locally

(§3.4).
[7] Use move semantics to avoid copying large objects (§4.6).
[8] Use unique_ptr to reference objects of polymorphic type (§11.2.1).
[9] Use shared_ptr to reference shared objects, that is, objects without a single owner that

is responsible for their destruction (§11.2.1).
[10] Use templates to maintain static type safety (eliminate casts) and avoid unnecessary

use of class hierarchies (Chapter 5).
[5] Before using a new feature in production code, try it out by writing small programs to test the

standards conformance and performance of the implementations you plan to use.
[6] For learning C++, use the most up-to-date and complete implementation of Standard C++

that you can get access to.
[7] The common subset of C and C++ is not the best initial subset of C++ to learn; §14.3.2.1.
[8] Prefer named casts, such as static_cast over C-style casts; §14.2.3.
[9] When converting a C program to C++, first make sure that function declarations (prototypes)

and standard headers are used consistently; §14.3.2.
[10] When converting a C program to C++, rename variables that are C++ keywords; §14.3.2.3.
[11] For portability and type safety, if you must use C, write in the common subset of C and C++;

§14.3.2.1.
[12] When converting a C program to C++, cast the result of malloc() to the proper type or change

all uses of malloc() to uses of new; §14.3.2.2.
[13] When converting from malloc() and free() to new and delete, consider using vector,

push_back(), and reser ve() instead of realloc(); §14.3.2.1.
[14] In C++, there are no implicit conversions from ints to enumerations; use explicit type conver-

sion where necessary.
[15] Use <string> to get std::string (<string.h> holds the C-style string functions).
[16] For each standard C header <X.h> that places names in the global namespace, the header <cX>

places the names in namespace std.
[17] Use extern "C" when declaring C functions; §14.3.2.4.
[18] Prefer string over C-style strings (direct manipulation of zero-terminated arrays of char).
[19] Prefer iostreams over stdio.
[20] Prefer containers (e.g., vector) over built-in arrays.
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Knowledge is of two kinds.
We know a subject ourselves,

or we know where
we can find information on it.

– Samuel Johnson

Token
!=, not-equal operator 6
", string literal 3
$, regex 79
%

modulus operator 6
remainder operator 6

%=, operator 7
&

address-of operator 10
reference to 10

&&, rvalue reference 51
(, regex 79
(), call operator 64
(? pattern 82
), regex 79
∗

contents-of operator 10
multiply operator 6
pointer to 9
regex 79

∗=, scaling operator 7
∗? lazy 80
+

plus operator 6
regex 79
str ing concatenation 75

++, increment operator 7
+=

operator 7
str ing append 76

+? lazy 80
-, minus operator 6
--, decrement operator 7
., regex 79
/, divide operator 6
// comment 2
/=, scaling operator 7
: public 40
<<, output operator 2
<=, less-than-or-equal operator 6
<, less-than operator 6
=

0 39
and == 6
auto 7
initializer 6
str ing assignment 77

==
= and 6
equal operator 6
str ing 76
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>, greater-than operator 6
>=, greater-than-or-equal operator 6
>> template arguments 159
?, regex 79
?? lazy 80
[, regex 79
[]

array 122
array of 9
str ing 76

\, backslash 3
], regex 79
ˆ, regex 79
_1, placeholders 126
_2, placeholders 126
{, regex 79
{}

grouping 2
initializer 6

{}? lazy 80
|, regex 79
}, regex 79
˜, destructor 37
0

= 39
nullptr NULL 12

0x hexadecimal literal 161

A
abs() 134
abstract

class 40
type 39

accumulate() 135
acquisition RAII, resource 118
adaptor, function 125
address-of operator & 10
adjacent_difference() 135
aims, C++11 158
algorithm 107

container 108, 115
numerical 135
standard library 114

<algor ithm> 73, 114
alias, using 67
alignas 159
alignof 159
allocation 37
almost container 121
alnum, regex 81
alpha, regex 81
[[:alpha:]] letter 81
ANSI C++ 157
append +=, str ing 76
argument

passing, function 52
type 61
value 61

arithmetic
conversions, usual 6
operator 6
vector 138

ARM 157
array

array vs. 123
of [] 9

array 122
[] 122
data() 122
initialize 122
size() 122
vs. array 123
vs. vector 122

<array> 73
asin() 134
assembler 155
assertion static_asser t 30
assignment

=, str ing 77
copy 49, 52
move 51–52

associative array – see map
async() launch 150
at() 98
atan() 134
atan2() 134
AT&T Bell Laboratories 157
auto = 7
auto_ptr, deprecated 161

B
back_inser ter() 108
backslash \ 3
base and derived class 40
basic_str ing 77
BCPL 162
begin() 100, 108
beginner, book for 1
Bell Laboratories, AT&T 157
bibliography 166
binary search 114
bind() 126

and overloading 126
binder 125
bit-field, bitset and 123
bitset 123

and bit-field 123
and enum 123

blank, regex 81
block
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as function body, tr y 99
tr y 28

body, function 2
book for beginner 1
bool 5
break 13

C
C 155

and C++ compatibility 161
Classic 162
difference from 161
K&R 162
macro, difference from 165
programmer 168
void ∗ assignment, difference from 165
with Classes 154
with Classes language features 155
with Classes standard library 156

C++
ANSI 157
compatibility, C and 161
core language 2
history 153
ISO 157
meaning 155
programmer 168
pronunciation 155
standard, ISO 2
standard library 2
standardization 157
timeline 154

C++03 157
C++0x, C++11 155, 158
C++11

aims 158
C++0x 155, 158
language features 158
library components 159

C++98 157
standard library 157

C11 161
C89 and C99 161
C99, C89 and 161
call operator () 64
callback 128
capacity() 97
capture list 65
carr ies_dependency 159
cast 39

deprecated C-style 161
named 161

catch
clause 28
ev ery exception 99

catch(...) 99
ceil() 134
char 5
character sets, multiple 77
chrono 125
<chrono> 73, 125, 146
class 34

concrete 34
scope 8
template 59

class
abstract 40
base and derived 40
hierarchy 42

Classic C 162
C-library header 73
clock timing 146
<cmath> 73, 134
cntr l, regex 81
code complexity, function and 4
comment, // 2
communication, task 147
comparison operator 6
compatibility, C and C++ 161
compilation

model, template 68
separate 24

compiler 2
compile-time

computation 128
evaluation 9

complete encapsulation 52
complex 35, 135
<complex> 73, 134–135
complexity, function and code 4
components, C++11 library 159
computation, compile-time 128
concatenation +, str ing 75
concept 63
concrete

class 34
type 34

concurrency 141
condition, declaration in 47
condition_var iable 146

notify_one() 147
wait() 146

<condition_var iable> 146
const, immutability 8
constant expression 9
const_cast 161
constexpr

function 9
immutability 8

const_iterator 112
constructor
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and destructor 155
copy 49, 52
default 35
delegating 159
explicit 53
inheriting 159
initializer-list 38
invariant and 29
move 51–52

container 36, 59, 95
algorithm 108, 115
almost 121
object in 98
overview 103
retur n 109
sor t() 129
specialized 121
standard library 103

contents-of operator ∗ 10
conversion

explicit type 39, 161
narrowing 7

conversions, usual arithmetic 6
copy 48

and hierarchy 55
assignment 49, 52
constructor 49, 52
cost of 50
memberwise 52

copy() 114
copyif() 114
core language, C++ 2
cos() 134
cosh() 134
cost of copy 50
count() 114
count_if() 113–114
cout, output 2
<cstdlib> 73
C-style

cast, deprecated 161
error handling 134
string 12

Currying 125

D
\d, regex 81
\D, regex 81
d, regex 81
data race 142
data(), array 122
D&E 154
deadlock 145
deallocation 37
declaration 5

function 3
in condition 47
interface 23

declarator operator 11
decltype 159
decrement operator -- 7
default

constructor 35
operations 52

=default 53
definition implementation 24
delegating constructor 159
=delete 55
delete

an operation 55
naked 38
operator 37

deprecated
auto_ptr 161
C-style cast 161
exception specification 161
feature 160

deque 103
derived class, base and 40
destructor 37, 52

˜ 37
constructor and 155
vir tual 44

dictionary – see map
difference

from C 161
from C macro 165
from C void ∗ assignment 165

digit, [[:digit:]] 81
digit, regex 81
[[:digit:]] digit 81
dispatch, tag 129
distribution, random 136
divide operator / 6
domain error 134
double 5
duck typing 68
duration 125
duration_cast 125
dynamic store 37
dynamic_cast 47

is instance of 47
is kind of 47

E
EDOM 134
element requirements 98
encapsulation, complete 52
end() 100, 108
engine, random 136
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enum, bitset and 123
equal operator == 6
equal_range() 114, 124
ERANGE 134
erase() 101
err no 134
error

domain 134
handling 27
handling, C-style 134
range 134
run-time 27

essential operations 52
evaluation

compile-time 9
partial 125

example
find_all() 109
Hello, Wor ld! 2
Rand_int 137
Vec 98

exception 27
and main() 99
catch ev ery 99
specification, deprecated 161

explicit type conversion 39, 161
explicit constructor 53
exponential_distr ibution 136
expor t removed 161
expr() 134
expression

constant 9
lambda 65

exter n template 159

F
fabs() 134
facilities, standard library 72
feature, deprecated 160
features

C with Classes language 155
C++11 language 158

file, header 25
final 159
find() 108, 114
find_all() example 109
find_if() 113–114
first, pair member 124
floor() 134
fmod() 134
for

statement 10
statement, range 10

forward_list 103
<forward_list> 73

free store 37
frexp() 134
<fstream> 73
__func__ 159
function 2

adaptor 125
and code complexity 4
argument passing 52
body 2
body, tr y block as 99
constexpr 9
declaration 3
implementation of vir tual 42
mathematical 134
object 64
overloading 4
template 62
type 128
value return 52

function 127
and nullptr 127

fundamental type 5
future

and promise 147
member get() 147

<future> 73, 147

G
garbage collection 54
generic programming 62
get<>() 125
get(), future member 147
graph, regex 81
greater-than operator > 6
greater-than-or-equal operator >= 6
greedy match 80, 83
grouping, {} 2

H
half-open sequence 114
handle 38

resource 49, 119
hash table 102
header

C-library 73
file 25
standard library 73

heap 37
Hello, Wor ld! example 2
hexadecimal literal, 0x 161
hierarchy

class 42
copy and 55
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navigation 47
history, C++ 153
HOPL 154

I
if statement 12
immutability

const 8
constexpr 8

implementation
definition 24
inheritance 46
iterator 111
of vir tual function 42
str ing 77

in-class member initialization 159
#include 25
increment operator ++ 7
inheritance 40

implementation 46
interface 46
multiple 156

inheriting constructor 159
initialization, in-class member 159
initialize 38

array 122
initializer

= 6
{} 6

initializer-list constructor 38
initializer_list 38
inline 35

namespace 159
inlining 35
inner_product() 135
inser t() 101
int 5

output bits of 123
interface

declaration 23
inheritance 46

invariant 29
and constructor 29

I/O, iterator and 112
<ios> 73
<iostream> 2, 73
iota() 135
is

instance of, dynamic_cast 47
kind of, dynamic_cast 47

ISO
C++ 157
C++ standard 2

ISO-14882 157
istream_iterator 112

iterator 108
and I/O 112
implementation 111

iterator 100, 112
<iterator> 130
iterator_categor y 129
iterator_traits 128, 130
iterator_type 129

J
join(), thread 142

K
key and value 101
K&R C 162

L
\L, regex 81
\l, regex 81
lambda expression 65
language

and library 71
features, C with Classes 155
features, C++11 158

launch, async() 150
lazy

∗? 80
+? 80
?? 80
{}? 80
match 80, 83

ldexp() 134
leak, resource 47, 54, 118
less-than operator < 6
less-than-or-equal operator <= 6
letter, [[:alpha:]] 81
library

algorithm, standard 114
C with Classes standard 156
C++98 standard 157
components, C++11 159
container, standard 103
facilities, standard 72
language and 71
non-standard 71
standard 71

lifetime, scope and 8
<limits> 128, 138
linker 2
list, capture 65
list 100, 103
literal
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", string 3
0x hexadecimal 161
raw string 78
user-defined 159

local scope 8
lock() 145

and RAII 145
log() 134
log10() 134
long long 159
lower, regex 81

M
macro, difference from C 165
main() 2

exception and 99
make_pair() 124
make_shared() 120
make_tuple() 125
make_unique() 120
management, resource 54, 117
map 101, 103
<map> 73
mapped type, value 101
match

greedy 80, 83
lazy 80, 83

mathematical
function 134
functions, standard 134

<math.h> 134
meaning, C++ 155
member initialization, in-class 159
memberwise copy 52
mem_fn() 126
<memor y> 73, 118, 120
merge() 114
minus operator - 6
model, template compilation 68
modf() 134
modularity 23
modulus operator % 6
move 51

assignment 51–52
constructor 51–52

move() 52, 114
multimap 103
multiple

character sets 77
inheritance 156

multiply operator ∗ 6
multiset 103
mutex 144
<mutex> 144

N
\n 3
naked

delete 38
new 38

named cast 161
namespace scope 8
namespace 26

inline 159
placeholders 126
std 72

narrowing 161
conversion 7

navigation, hierarchy 47
new

naked 38
operator 37

noexcept 28
noexcept() 159
non-standard library 71
noretur n 159
nor mal_distribution 136
notation, regular expression 79
not-equal operator != 6
notify_one(), condition_var iable 147
NULL 0, nullptr 12
nullptr 11

function and 127
NULL 0 12

number, random 136
<numer ic> 135
numerical algorithm 135
numer ic_limits 138

O
object 5

function 64
in container 98

object-oriented programming 42
operation, delete an 55
operations

default 52
essential 52

operator
%= 7
+= 7
&, address-of 10
(), call 64
∗, contents-of 10
--, decrement 7
/, divide 6
==, equal 6
>, greater-than 6
>=, greater-than-or-equal 6
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++, increment 7
<, less-than 6
<=, less-than-or-equal 6
-, minus 6
%, modulus 6
∗, multiply 6
!=, not-equal 6
<<, output 2
+, plus 6
%, remainder 6
∗=, scaling 7
/=, scaling 7
arithmetic 6
comparison 6
declarator 11
delete 37
new 37
overloaded 36
user-defined 36

optimization, short-string 77
ostream_iterator 112
out_of_range 98
output

bits of int 123
cout 2
operator << 2

overloaded operator 36
overloading

bind() and 126
function 4

override 40
overr ide 45
overview, container 103
ownership 118

P
packaged_task thread 149
pair 124

member first 124
member second 124

parameterized type 59
partial evaluation 125
par tial_sum() 135
passing data to task 143
pattern, (? 82
phone_book example 96
placeholders

_1 126
_2 126
namespace 126

plus operator + 6
pointer

smart 118
to ∗ 9

polymorphic type 40

pow() 134
precondition 29
predicate 64, 113

type 130
pr int, regex 81
program 2
programmer

C++ 168
C 168

programming
generic 62
object-oriented 42

promise
future and 147
member set_exception() 147
member set_value() 147

pronunciation, C++ 155
punct, regex 81
pure vir tual 39
purpose, template 62
push_back() 38, 97, 101
push_front() 101

R
R" 78
race, data 142
RAII

lock() and 145
resource acquisition 118

RAII 38
Rand_int example 137
random number 136
random

distribution 136
engine 136

<random> 73, 136
range

checking Vec 98
error 134
for statement 10

raw string literal 78
reference

&&, rvalue 51
rvalue 52
to & 10

regex
| 79
$ 79
( 79
) 79
∗ 79
+ 79
. 79
? 79
ˆ 79

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

– R –  Index 179

[ 79
] 79
} 79
{ 79
alnum 81
alpha 81
blank 81
cntr l 81
\d 81
d 81
\D 81
digit 81
graph 81
\l 81
\L 81
lower 81
pr int 81
punct 81
regular expression 78
repetition 80
\S 81
\s 81
s 81
space 81
\U 81
\u 81
upper 81
w 81
\w 81
\W 81
xdigit 81

<regex> 73, 78
regular expression 78

regex_iterator 83
regex_search 78
regular

expression notation 79
expression <regex> 78
expression regex 78

reinter pret_cast 161
remainder operator % 6
removed, expor t 161
repetition, regex 80
replace() 114

str ing 76
replace_if() 114
requirement, template 63
requirements, element 98
reser ve() 97
resource

acquisition RAII 118
handle 49, 119
leak 47, 54, 118
management 54, 117
safety 54

rethrow 30

return
function value 52
type, suffix 159

retur n
container 109
type, void 3

returning results from task 144
run-time error 27
rvalue

reference 52
reference && 51

S
\s, regex 81
s, regex 81
\S, regex 81
safety, resource 54
scaling

operator ∗= 7
operator /= 7

scope
and lifetime 8
class 8
local 8
namespace 8

search, binary 114
second, pair member 124
separate compilation 24
sequence 108

half-open 114
set 103
<set> 73
set_exception(), promise member 147
set_value(), promise member 147
shared_ptr 118
sharing data task 144
short-string optimization 77
Simula 153
sin() 134
sinh() 134
size of type 5
size(), array 122
sizeof 5
sizeof() 128
size_t 67
smart pointer 118
sor t() 107, 114

container 129
space, regex 81
specialized container 121
sqr t() 134
<sstream> 73
standard

ISO C++ 2
library 71
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library algorithm 114
library, C++ 2
library, C with Classes 156
library, C++98 157
library container 103
library facilities 72
library header 73
library std 72
mathematical functions 134

standardization, C++ 157
statement

for 10
if 12
range for 10
switch 13
while 12

static_asser t 138
assertion 30

static_cast 39, 161
std 2

namespace 72
standard library 72

<stdexcept> 73
STL 157
store

dynamic 37
free 37

string
C-style 12
literal " 3
literal, raw 78
Unicode 77

str ing 75
[] 76
== 76
append += 76
assignment = 77
concatenation + 75
implementation 77
replace() 76
substr() 76

<str ing> 73, 75
subclass, superclass and 40
substr(), str ing 76
suffix return type 159
superclass and subclass 40
switch statement 13

T
table, hash 102
tag dispatch 129
tanh() 134
task

and thread 142
communication 147

passing data to 143
returning results from 144
sharing data 144

TC++PL 154
template

arguments, >> 159
compilation model 68
variadic 66

template 59
class 59
exter n 159
function 62
purpose 62
requirement 63

thread
join() 142
packaged_task 149
task and 142

<thread> 73, 142
thread_local 159
time 125
timeline, C++ 154
time_point 125
timing, clock 146
tr y

block 28
block as function body 99

tuple 125
type 5

abstract 39
argument 61
concrete 34
conversion, explicit 39, 161
function 128
fundamental 5
parameterized 59
polymorphic 40
predicate 130
size of 5

typename 59, 110
<type_traits> 130
typing, duck 68

U
\u, regex 81
\U, regex 81
Unicode string 77
unifor m_int_distribution 136
uninitialized 7
unique_copy() 107, 114
unique_lock 144, 146
unique_ptr 47, 118
unordered_map 102–103
<unordered_map> 73
unordered_multimap 103

www.it-ebooks.info

http://www.it-ebooks.info/


ptg11539604

– U –  Index 181

unordered_multiset 103
unordered_set 103
unsigned 5
upper, regex 81
user-defined

literal 159
operator 36

using alias 67
usual arithmetic conversions 6
<utility> 73, 124–125

V
valarray 138
<valarray> 138
value 5

argument 61
key and 101
mapped type 101
return, function 52

value_type 67
variable 5
variadic template 66
Vec

example 98
range checking 98

vector arithmetic 138
vector 96, 103

array vs. 122
<vector> 73
vector<bool> 121
vir tual 39

destructor 44
function, implementation of 42
function table vtbl 42
pure 39

void
∗ 165
∗ assignment, difference from C 165
retur n type 3

vtbl, vir tual function table 42

W
w, regex 81
\w, regex 81
\W, regex 81
wait(), condition_var iable 146
WG21 154
while statement 12

X
X3J16 157
xdigit, regex 81
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